~AD-A127 333 PRELIMINARY DESIGN AND IMPLEMENTATION OF A METHOD FOR 1/;
VALIDATING EVOLVING ADA COMPILERS{U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..)
UNCLASSIFIED E D MILLER MAR 83 AFIT/GCS/MA/B3M-1 F/G 9/2 NL

g NSRS 3 g
i
°

vt

' [)
. [F5)
——
(]
'8
w
[}

5

FEFEE

N
o
I Q
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

/

AFIT/GCS/MA/83M-1

PRELIMINARY DESIGN AND IMPLEMENTATION
OF A METHOD FOR VALIDATING EVOLVING
ADA COMPILERS

THESIS

AFIT/GCS/MA/83M-1 Edward D. Miller
Capt NISA

AFIT/GCS/MA/83M-1

PRELIMINARY DESIGN AND IMPLEMENTATION

OF A METHOD FOR VALIDATING EVOLVING
ADA COMPILERS

THESIS

— 1
! : Presented to the faculty of the School of Engineering !
of the Air Force Institute of Technology g
' , Air University

] ' . in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Accession For

NTIS GRA&I §
DTIC TAB

by Unanneunced a
Justification .}

Edward D. Miller Jr.

By. 1
Capt USA Distribution/
Availability Codes
Graduate Computer Science Avall audfor 1
March 1983 . Dist Special

3413

AT

Approved for public release; distribution unlimited.

STEPRP RN Y ol o doccit i

PREFACE

The Department of Defense funded the development of the
Ada Compiler Validation Capability (ACVC) for use in the
validation-testing of Ada compilers. The ACVC was targeted
to test only those compilers which implement the entire Ada
language. It appeared that the development of a testing
capability for evolving Ada compilers would be a very useful
tool for compiler developers. The need for such a tool
coupled with my desire to learn more about Ada led 'to the
selection of this thesis topic.

I would 1like to thank my advisor, Captain Roie R.
Black, for all the time and guidance he has given me. His
ideas and suggestions during the course of the project were
most helpful, I would also like to thank ny'thesis-committee
members, Lieutenant Colonel Harold W. Carter and Major
Michael R. Varrieur. Their suggestions and commments were
very valuable.

Deep gratitude is also expressed to Patricia A. Knoop
of the Language Control Branch, Computer Operations
Division, Aeronautical Systems Division, Wright-Patterson
AFB, Ohio, who originally proposed the topic and provided
the resources needed during the project.

Finally, I would like to thank my parents for all the

support and encouragement they have given me.

ii

i . e . b R d i el ey o "

——
- []

[y
L] [] []
SWN

e
NN
e o o
N =

2.3

2.4

SRS L LWLWLWLWLWW N
L]

Contents

INTRODUCTION

Background -- DoD's Software Problem

1.1.1 The proliferation of languages
The High Order Language Working Group
The search for a solution
Design Phase
The need for a standard
The Ada Compiler Validation Capability
Ada compiler development
The need for an incremental
validation capabilty
Objective
General Approach
Sequence of Presentation

[Y
* o * 9 L] [] L]
T T e e))
* L] * L] * L] L]
O~ BN

ANALYSIS
Introduction
Background
2.2.1 Approach to testing
2,2,2 Test set design
2,2.3 Test set organization
General structure
2,3.1 Report Package
2.3.2 Tests '

Detailed Analysis

2,4,1 Class
2,4,2 Class
2,4,3 Class
2.4,4 Class
2,4,5 Class
2.4.6 Class

HrDOO>

PROJECT DEVELOPMENT

Introduction

Overview

Identification of language-features
Development of a representation

Removal of unsupported features

3.5.1 Outputting the modified representation
Summary

IMPLEMENTATION
Introduction
Input

Data Structures
Output
Limitations

ii4d

Page

ONNO OB WWNE-

Contents
Page
5. Recommendations and Conclusions 53
5.1 Introduction 53
5.2 Recommendations . 53
5.3 Conclusions 54
Bibliography 56
Appendix A - Evolving Compiler Development 57
Appendix B - Report Package 60
Appendix C - BNF 66
Appendix D - Removal of language-features from
valid tests 85
Appendix E - Manual evaluation of tests 89
Appendix F - Description of Garlington Compiler 100
Appendix G - Modifications to the Garlington compiler 102
Appendix H - Empty productions 103 I
Appendix I - Recursive productions 104 ‘

List of Figures

Figure Page
2-1 LRM definition of identifier structure 15
2-2 ACVC test objective and design guidelines 16
2-3 Class A Test 21 :
2-4 Repackaged Structure for Class A tests 22
2-5 Class C test 24
2-6 Restructured Class C test 25 i
2-7 Class D test 26]
. 2-8 Class B test 27
2-9 Class L test 28
3-1 Overview of Test Development Process 31
3-2 Internal structure of Modify Test Program 32
. 3-3 Parse tree representation 36
p | 3-4 Representation of a production 36
3-5 Representation of Progrem ::= compl_unit_list 38
! 3-6 Representation of Production 4 is added 38
] 3-7 Representation of a recursive production 40
! 3-8 Representation of a potentially
’ empty production 42
{ 3-9 Representation after production is eliminated 43
' 4-1 Data structure used to represent productions 47
f 4-2 Test with records and arrays removed 50
4-3 Test with record removed 51
4-4 Complete test 52
D-1 Class A test
D-2 Class A test with record removed
D-3 Class A test with records and arrays removed
E-1 Test segment analyzed manually

RS »}‘\)

k3
B TP s et % G VIR v SO PRI 4 e s

3
3
14
i
g
‘

P

AFIT/GCS/MA/83M-1

ABSTRACT

-—sThis project consisted of a preliminary design and a
partial implementation of a tool which modifies the existing
Ada Compiler Validation Capability (ACVC) test set so it can
be used to test evolving Ada compilers. The project
evaluated the feasibility of repackaging each of test
classes found in the ACVC and suggested methods for
repackaging the tests. The tool developed uses a
table-driven parser which parses the July 1980 proposed
standard. It wuses output from the parser to generate a
representation of a test program. Once the representation is
developed, unsupported langauge-features are ‘removed from

it. The remaining representation is output as a valid test

program,

N~

1. INTRODUCTION

In order to combat the rising cost of software in
embedded computer systems, the Department of Defense (DoD)
sponsored efforts which 1led to the design of the Ada
programming language. The efforts were not limited to the
design of a new programming language; DoD also sponsored
efforts to develop the Ada Programming Support Environment
(APSE) and the Ada Compiler Validation Capability (ACVC).

This thesis project is based on the results of the ACVC
developed by "The Software Technology Company" (SofTech).
Specifically, it investigates the problem of modifying tests
contained in the ACVC so they can be used to test evolving
Ada compilers (described in Appendix A). The project was
proposed and sponsored by the Language Control Branch,
Computer Operations Division, Aeromautical Systems Division
Computer Center, Wright-Patterson AFB.

This chapter begins by providing background information
on the development of the Ada programming language and the
ACVC. It concludes with an introductory description of the

thesis project.

1.1 Background -- DoD's Software Problem
Intensive studies completed in the early 1970's
identified the software costs associated with embedded

systems as the most significant DoD software

computer

problem, These studies also revealed that the majority of
the embedded computer system costs were related to software

maintenance rather than software development (Ref 4:24).

l1.1.1 The proliferation of languages

A principle factor contributing to the rising cost of

embedded computer system software was the large number of

languages used within the DoD. Over 450 general-purpose

languages and dialects were being used, and the majority of

these languages were used in embedded computer systems.

This lack of programming language commonality contributes to

the rising software costs in several wéys (Ref 4:26):

- : (1) it requires duplication in training and maintenance
for the 1languages, their compilers, .nd their

associated software support packages.

(2) it limits communication among software
,J! i practitioners.
73 F (3) it results in support software being developed
[

which can only be used on one project.
;? (4) it ties software maintenance to the original
developer.
T (5) it 1limits the development of support and
maintenance software. |

(6) it limits the applicability of new support

f software.

‘(7) it creates a situation in which the adoption of an

—)

existing language by a new project can be more risky
and less cost-effective than the development of a new

programming language specialized to the project.

1.1.2 The High Order Language Working Group

In order to resolve the problems presented by the large

number of languages, the DoD began a common high order

language programming effort., To coordinate this effort, a

PR —

High Order Language Working Group (HOLWG) was formed. This
group consisted of representatives from the Army, Navy, Air
Force, Marine Corps, Defense Communications Agency and
Defense Advanced Research Projects Agency. The HOLWG was
b { chartered :5 "investigate the establishment of a minimal

number of common high-order computer programming languages

3 é to be wused in the development, acquisition, and support of
)
& computer resources embedded within Defense Systems" (Ref
; 4:27).

i 1.1.3 The search for a solution

The first step taken by the HOLWG was to adopt an

interim list of seven programming languages approved for use

: in the development of new defense system software. The
% AJ{j second step was to determine the characteristics of a

,41 general-purpose programming language suitable for embedded

computer applications. These characteristics vere put in
the form of requirements which were <circulated to the

military, industrial and academic communities for comments.

After the comments were received and evaluated, a new

requirements list was circulated. This process was repeated
until a suitable language description was defined,

The next step was an evaluation to determine if any
existing language met the requirements specified 1in the
language description. The results obtained from evaluations
of 23 different languages led the HOLWG to conclude that no
existing language satisfied the requirements well enough to
be adopted as a common language. Even though no existing
language was found suitable, the evaluators did agree that
it was possible to design a single language that would meet
all the requirements. Based on this finding, the HOLWG
began directing their efforts toward the design of a new

language (Ref 4:27).

1.1.4 Design Phase

The design phase evaluated fifteen design proposals
received for the new language description. Of these, four
were selected for parallel development efforts. At the
conclusion of these efforts, the 1language definition
developed by CII Honeywell-Bull was accepted as the basis

for the new DoD language, now known as Ada (Ref 4:29),

1.1.5 The need for a standard

The key to the economic success of Ada is the
portability of programs, programmers, compilers and software

tools. To insure portability it was essential that Ada be

established as a clear and wunambiguous standard. In
addition a means for discouraging and detecting compilers
which did not correctly implement the standard was needed.
This led to the trademarking of the name Ada and the

development of a means for validating compilers.

1.1.6 The Ada Compiler Validation Capability

The Ada Compiler Validation Capability (ACVC) effort
began at SofTech in September of 1979, and the first version
was completed in 1981, It is especially significant because
it makes Ada the first programming language to have a means
of enforcing the language specification before diverse
implementations begin to appear (Ref 6:57).

The primary purpose of the ACVC was to determine if Ada
compilers comply with the language definition contained in
the "Reference Manual for the Ada Programming Language".
The ACVC was also designed to help the implementers comply
with the 1language standard, by pointing out potential
implementation difficulties (Ref 6:57).

The current version of the ACVC has three main

components (Ref 2:1-1):

1. An Implementers Guide (IG) which describes the
implementation implications of the Ada standard and

conditions which are to be checked by the validation

tests.

Sy ——
a

2, Test'programs that are submitted to the compiler
being tested. The current version of the ACVC has over
1400 tests.designed to check the compilers conformance
to the language specification.

3. Validation support tools that are used to prepare
tests for execution and to analyze the results of

execution,

1.1.7 Ada compiler development

Widespread acceptance of the Ada programming language
is not 1likely to occur until compilers become readily
available., Currently there are a large number of compiler
development efforts wunder way. The first successful
validation of an Ada compiler was expected to occur in late
1982,

A large number of the compiler development efforts are
being directed at the microcomputer market. The approach
many of these efforts have taken is to develop a basic
subset of the full Ada 1language. Once the subset is
developed, enhancements are then added to it wuntil the
entire 1language is implemented (Appendix A provides a more
detailed discussion of a typical development effort).

Developers of these subsets have encountered a large
number of problems. Two of the major problems are the
complexity of the language and the lack of adequate support

tools needed during the compiler development process.

A U e *

——— e ar ——— P APt
-

WP o o+ o <

1.1.8 The need for an incremental validation capability

A significant aspect of the ACVC is that it is targeted
to test only those compilers which are completed and
implement the entire language. As a result, the ACVC uses
language features which are 1likely to be supported only
toward the end of the compiler construction. This severely
limits the wusefulness of the ACVC during the development
phases of a compiler. This is significant because the cost
of repairing an error 1is reduced if it is detected soon
after it is committed. This makes the availability of
adequate test tools for compilers essential during the
developmental stages. Errors made during the early stages of
the compiler development could be extremely costly if they
go undetected until attempts are made to validate the

compiler,

1.2 OBJECTIVE
The objective of this project was to develop techniques
for transforming the existing ACVC test set into a version

which could be used to test evolving Ada compilers.

1.3 GENERAL APPROACH

The approach taken in this project was significantly
influenced by the requirement for Ada compilers to pass the
ACVC., As a8 result of this requirement, the project was

directed toward modifying the current set of ACVC tests

rather than attempting to develop a completely new test set.

The approach taken was to remove any language-features
used in the test set that are not supported by the compiler
being tested. Once the unsupported features are removed, the
compiler should pass the remaining portion of the test set.
Automating the process which removes unsupported features
from the tests would allow a new test set to be developed
every time new features are added to the compiler.

The advantage of this approach is that the actual ACVC
tests are being used, Tests are incorporated into the test
set as soon as the language-features used by the test are
supported by the compiler. The test set will continue to
grow as the compiler becomes more complete. Passing tests or
portions of tests used in the ACVC should provide scme
degree of confidence that the actual ACVC tests can be
passed. It will also help point out deficiencies in the

compiler early in the development stages.

1.4 SEQUENCE OF PRESENTATION

The project consisted of three major phases, which are
described in the following chapters. The first phase was an
analysis of the existing ACVC, This phase studied the
different types of tests contained in the ACVC and
identified the wuse of language features in the tests which
were not related to the test objectives (language features
that are used unnecessarily will be referred to as
langauage-feature dependencies). The analysis phase then

looked for ways the tests could be repackaged without the

language-feature dependencies.

;'; The second phase of the project investigated the
problem of transforming the test set into a version that
could be used to test evolving compilers. This focused on
the removal of features not yet supported in an evolving
compiler. Particular emphasis was placed on the automation
of a process to accomplish this,

The third phase was a partisl implementation of the

tool described in the second phase. The purpose of the

partial implementation was to demonstrate that it was

! possible to automate the removal of unsupported language

1 features,

i it o il

=

s e v

2. ANALYSIS

2.1 Introduction

The first step in this project was a detailed analysis
of the existing ACVC test set. The purpose of this analysis
was to identify the language-feature dependencies contained
in the ACVC test set and determine what impact their removal
would have on the test set. This requires a basic
understanding of the ACVC's approach to testing, its design
goals, its organization, and the general structure of the
test set.

This analysis is broken into four sections. The first
section provides background information on the testing
approach, the design goals, and the organization of the test
set. The second section looks at the the general structure
of the test set, while the third section provides a detailed
look at some of the tests found in the test set. The fourth

section summarizes the results of the analysis.

2.2 Background
The first step 1in the analysis of the ACVC was to

review the test set. This review looked at the testing
approach taken by SofTech, some of the factors that
influenced the design of the test set, and the organization

of the test set.

e ‘ *'“'““""‘"“""F""'-U'FN------!!‘

2.2.]1 Approach to testing

Black-box and white-box testing are the two generally
accepted approaches to testing. White-box testing is
predicated on a detailed knowledge of the internal workings
of a product. Tests are designed to determine if internal
operations are performed according to specification,
Black-box tests, on the other hand, are designed to
demonstrate that the functions a product is supposed to
perform are operational. The internal structure of the
software is not considered when designing black-box tests
(Ref 7-292).

The designers of the ACVC used the black-box approach
to testing. This was appropriate since the ACVC was designed
to determine only if the compiler conformed to the language
definition, Issues such as quality and efficiency were not
considered when designing the test set. Also, to use the
white-box approach would have required a detailed knowledge
of each compiler submitted for validation. Since the manner
in which various tasks are implemented may differ greatly
between compilers, a new test set would be required for each

compiler submitted for validation.

2.2.2 Test set design
Before making any changes to the test set several
factors which influenced its design must be considered. This

section will ©briefly describe some of the design goals of

the test set and some of the factors which had a significant

influence on the design of the test set.
One of the ACVC's principle design goals was to develop

a test set which was portable. To accomplish this, SofTech
adopted the following set of coding standards in their test
set (Ref 3:A-2):

(1) The source line length in test programs does not

exceed 72 characters.

(2) Tests are limited to the basic 55 character set.

(3) Numeric values were 1limited so that a 12 bit word

size is sufficient.

(4) Array sizes are kept small.

(5) No tests use both fixed and floating-point types
unless the test objective addresses interactions between
these types.

(6) Unnecessary use of fixed and floating-point types,
integer types other than INTEGER, access types, tasks,

generics, representation specifications, subunits,

exceptions, overloading, renaming, private types, and

input/output is prohibited.

In addition to insuring that the test set is portable,
these coding standards also help reduce the number of
failures that are not related to the test objectives (Ref
6:60).

Another design goal wvas to reduce the manual
intervention required when using the test set. It resulted

in the development of a large number of small tests which

12

o - i anch . H oot e it o ; - il oo

require no modification during the testing process (Ref
6:59).

The need for the ACVC to be constantly updated also
impacted on its design. Black-box tests cannot guarantee
that software is error free. Therefore as errors are found
in compilers which successfully passed the validation test,
new tests must be developed to insure that these errors are
identified in future validation attempts. This was another
reason the use of small tests was adopted in the test set
(Ref 6:59).

Finally, the decision to test only completed compilers
was significant since it allowed features normally supported
only towards the end of a compiler's development to be used.
The prime example of this is & separately compiled package

used to report test results (Report Package).

2.2.3 Test Set Organization

" The tests in the test set are organized to correspond
with objectives contained in the Implementers' Guide. These

objectives can be broken into eleven major areas:

1. Lexical Elements

2. Declarations and Types
3. Names and Expreasions
4, Statements

5. Subprogranms

6. Packages

7. Visibility Rules

8. Tasks

9, Program structure and compilation issues
10, Exceptions

11. Generic program units

The Implementers' Guide was designed to correspond with
the "Reference Manual for the Ada Programming Language"
(LRM). Obiectives found in the IG were based on the language

definition contained in the LRM.

The language definition was reviewed to identify
potential implementation difficulties. A set of test
objectives was then developed to insure these potential
deficiencies were identified during testing. The final step

was to develop tests which would accomplish the test

objectives.

Figures 2.1 and 2.2 reflect the relationship that
exists between the LRM and the IG. Figure 2.1 is an example
of the language definition taken from the LRM, while Figure
2.2 is a 1list of the test objectives taken from the IG that

correspond to the language definition in Figure 2.1.

The language definition presented in the LRM uses a
simple variant of the Backus-Naur form (BNF). The BNF is
used to specify the rules for forming valid programs. These
rules are called productions, Figure 2-1 shows the
productions that define an identifier in Ada. The LRM uses
square brackets to enclose optional items, braces to
identify items which may occur repeatedly (zero or more

times), and vertical bars (|) to separate alternative items.

2.3 Identifiers
Identifiers are used as names (also as reserved words).
Isolated underscore characters may be included. All

characters, including underscores, are significant,

identifier ::=
letter {Iunderscore] letter_or_digig}
letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

Note that identifiers differing only in the use
of corresponding upper and lower case letters are

considered as the same,

Figure 2-1. LRM definition of identifier structure (Sec 2.3)

The productions shown 1in figure 2-1 show that identifiers
must begin with a letter., They also show that consecutive
underscores are not permitted in identifiers, and that

identifiers cannot end with an underscore.

—

ettty oo ot
L}

Test Objectives and Design Guidelines

l, Check that upper and lower case letters are
equivalent in identifiers (including reserved words).

Implementation Guideline: Try some all-upper,
all-lower, and mixed case identifiers.

2, Check that consecutive, leading, and/or trailing
underscores are not permitted in identifiers.

3. Check that identifiers can be as long as the maxirum
input line length permitted by the implementation
and that all characters are significant (e.g., not
just the first 8 or 16, or not just the first m and
last n characters). Try .identifiers serving as
veriables, enumeration literals, subprogram names,
parameter names, entry names, record component names,
type names, package names (both library units and
and subunits), statement labels, block labels, loop
labels, task names, and exception names.

Implementation Guideline : Maximum length subprogram
names and package names should be checked in separate
tests,

4, Check that ? X @ # ' are not permitted in
identifiers,

Figure 2-2, ACVC test objectives and design guidelines
(section 2.3)

2.3 General Structure

The second step in the analysis looked at the structure
of the test set. The test set has two primary components,
the Report Package and the tests. This section will present

an overview of each of these components.

2.3.1 Report Package

The report package 1is a separately compiled group of
routines used to automate the process of reporting test
results, They are independent of the tests themselves, and
provide the mechanism for reporting pass/fail results of
executable tests (Ref 3:A-1).

The report package (see Appendix B for the source

listing) contains the following subprograms (Ref 3:B-1):

1., Test: This procedure is called at the beginning of
all executable tests. It saves the test name and

outputs the name and description,

2, Failed: This procedure outputs a failure message

that includes a brief description of what failed.

3. Comment: This procedure outputs a comment message.

4, Result: This procedure is called at the end of

each test. It indicates whether whether the test has

passed or failed.

o 1

5. Put_Msg: This procedure formats and outputs
messages. It can only be called within the package

itself.

6. Ident_int, Ident_char, Ident_bool, and Ident_str:
These functions are dynamic value routines which serve
as identity functions for the types Integer, Character,

Boolean and String.

7. Equal: A recursive equality function for the type

integer.

2,3.2 Tests
The tests in the ACVC are written to correspond to the
objectives listed in the Implementers' Guide. There are six

distinct classes of tests which may be found in the test set

(Ref 6:60):

Class A: These tests are designed to compile and
execute without any errors. No checks are made at

run~time to determine if a test objective has been met.

| o Class B: These tests are illegal and should fail

compilation, They are passed if all errors are

detected at compile time and all legal statements are

P ’ ; considered legal.

18

Class C: These tests are designed to compile and

execute, They are self-checking.

Class D: These are capacity tests. There are no

pass/fail criteria,

Class E: These are tests that check whether certain
implementation dependent options have been provided.
They also determine how ambiguities in the 1language

standard have been resolved.

Class L: These are illegal programs that are expected
to fail at link-time. The failure must occur Dbefore
any declarations in the mai: progxaﬁ or any units
referenced in the main progras are elaborated. They may

fail compilation in some implementations.

2.4 betailed Analysis

This section will provide a detailed analysis of each
type of test found in the test set., It will specifically
address four questions:

(1) What language-feature dependencies exist ?

(2) What effect will their removal have ?

(3) How can the test be repackaged to eliminate the

language-feature dependencies ?

(4) Can the repackaged tests be used to test evolving

compilers, or are further modifications needed ?

19

Cvmae

2.4.1 Class A

As mentioned before, Class A tests are designed to
compile without any errors. Approximately two percent of the
tests found in the test set are Class A tests. A typical
example of a Class A test is shown in figure 2-3.

The test shown in figure 2-3 wuses several 1language
features which do not contribute to the accomplishment of
the test objectives. The first dependency is the WITH REPORT
statement. It is used to indicate the dependency of the
procedure on the Report Package. The second deperdency is
the USE REPORT statement, which acts like a declaration in
the procedure. The final two dependencies are the procedure
calls TEST and RESULT. Both of these procedures are found in
the separately compiled REPORT package.

After identifying the dependencies, the next step is to
determine what effect their removal would have on the test
set. The first consideration is whether the test objectives
will still be accoéomplished, Since the purpose of the
statements containing the dependencies 1is to report the
pass/fail status of the tests, there is no dimpact on the
test objectives. Another consideration is whether the
initial design goals are still accomplished. In this case
the removal of the dependencies would result in a
significant increase in the manual effort required to
analyze test results. Therefore the initial design goals

would not be accomplished.

20

-~ A21001A.ADA
CHECK THAT THE BASIC CHARACTER SET IS ACCEPTED
— OUTSIDE OF STRING LITERALS AND COMMENTS.

DCB 1/22/80

b WITH REPORT;

: 5 PROCEDURE A21001A IS
’ ' USE REPORT;

!

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
{ A : TABLE := (2 { 4 110=>1,1| 3] 5..9=>0) ;
- USEOF : ()) ,

TYPE BUFFER IS
RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;
END RECORD; — USED TO TEST . LATER
Rl : BUFFER;
ABCDEFGHIJKIM : INTEGER; — USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; -- USE OF NOPQRSTUVWXYZ
Z_1234567890 : INTEGER; — USE OF _1234567890

I1, I2, I3 : INTEGER;
Cl, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
Il :; 2% (3-142)/2;I2:«a8; —USES()*+-/3
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
C3:=(Cl&C2; — USE OF &
I2 := 16#D#; — USE OF #
I3 := A'LAST; — USE OF '
R1.POS := 3; — USE OF .
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN — USE OF > = ¢
NULL;
END IF;
END;
RESULT;
END A21001A;
Figure 2-3, Class A Test
21

& e ——

The next step is to look for a way the tests can be
constructed without the language-feature dependencies. The

problem is that there is a need for the capability to report

test status, therefore there will always be language-feature
dependencies. Since the dependencies cannot be completely
eliminated, emphasis should be placed on developing a method
for reporting the status using language features likely to
be supported early in a compiler's development. Special
emphasis must be placed on eliminating the need\igi\separate
compilation, since it is usually not 1mp1ementéd\inmthe

early stages of a compiler development effort.

procedure sample_test is
procedure test is
begin
-- code
end;
procedure result;
begin
-~ code
end;
begin
test;
-- code
result;
end;

Figure 2-4. Repackaged Structure for Class A tests

There are several ways the test set could be repackaged
to reduce the language dependencies. Perhaps the simplest
method 1is to insert the TEST and RESULT procedures into the

actual test in the manner shown in figure 2-4.

22

U U

This method would require the insertion of two
procedures in the test and the elimination of the WITH and
USE statements. Also the manner in which input/output is
handled must be considered since the TEST and RESULT
procedures require some means of input/output. In the REPORT
package the dependency on TEXT_IO is declared. The manner in
which input/output is handled in evolving compilers varies
greatly, so the actual code for the TEST and FAIL procedures
will probably need to be rewritten for each compiler being
tested,.

The final question considered is whether Class A tests
could be used to test evolving compilers once the
language-feature dependencies are removed, The answver
depends on what 1language features are implemented by the
compiler being tested, and what features are used in the
tests. For instance, the test shown in figure 2-3 would
fail if the compiler being tested did not support the record
structure. This means for Class A tests to be usable, some
means for identifying language features must exist. Tests
that use features not supported by the compiler must either
be eliminated from the test set, or the features not
supported must be eliminated from the test. In the case of
the test in figure 2-3, the type declaration of buffer, the
declaration of Rl as type buffer, and the assignment
statement Rl.pos := 3 could be removed. The resulting test
could then be used to test evolving Ada compilers which do

not support records.

—~ C27001A.ADA |
—— CHECK THAT A COMMENT IS TERMINATED BY THE END OF THE

— LINE, AND NOT BY THE NEXT — (ELSE THIS COMMENT WILL BE
~ TREATED AS CODE).

— DCB 1/16/80

WITH REPORT;
PROCEDURE C27C01A IS
USE REPORT;

I1 : INTEGER; ,
BEGIN
TEST("C27001A","COMMENTS TERMINATED BY END OF LINE"); |

I1 := 5; — I1 INITIALIZED.

— BELOW CHECKS THAT A COMMENT IS TERMINATED BY END OF LINE
Il := 11+ 7;
IF I1 /= 12 THEN
END FAILED("COMMENTS NOT TERMINATED BY END OF LINE");
IF; '

RESULT;
END C270014A;

Figure 2-5. Class C Test

2.4.2 Class C 1

Class C tests are very similar to the Class A tests.
The primary difference is that Class C tests have a run-time
check, usually in the form of an IF statement. Approximately
65 percent of the tests in the test set are Class C tests,

An example of a Class C test is shown in Figure 2-5,

Class C tests contain the same dependencies found in

Class A tests. They also have one additional dependency, the
procedure call FAILED. The FAILED procedure is also found in

the separately compiled REPORT package.

The test objectives of Class C tests will not be
accomplished if the FAILED procedure is removed. The FAILED ?
procedure is an integral part of the run-time check, and if |
it is removed the run-time check will not be performed.
Therefore it is essential that some method be developed for
repackaging the FAILED package.

The method used to repackage Class A tests can also be
used for Class C tests. The only major difference would be
the inclusion of the FAILED procedure. The repackaged tests

would have the form shown in figure 2-6.

procedure sample_test is
procedure failed is
begin
-~code
end;
procedure test is
begin
-- code
end;
procedure result;
begin
-- code
end;
begin
test;
-- code
result;
end;

Figure 2-6. Restructured Class C test

Class C tests are similar to Class A tests in that they
cannot be wused to test an evolving compiler unless all of

the unsupported features are removed from the tests.

25

T o e

4 e ———
<

~- D4AOO2B.ADA

— LARGER LITERALS IN NUMBER DECLARATIONS, BUT WITH RESULTING
— SMALLER VALUE OBTAINED BY SUBTRACTION. THIS TEST LIMITS
— VALUES TO 64 BINARY PLACES.

WITH REPORT;
PROCEDURE D4AOO2B IS
USE REPORT;

: CONSTANT := 4123456789012345678 - 4123456789012345679;
CONSTANT := & # (10 ** 18) - 3999999999999999999;

: CONSTANT := (1024 ** 6) - (2 ** 60);

CONSTANT := 9_223_372_036_854_775_807/20_303_320_287_433;
CONSTANT := 36_028_790_976_242_271 REM 17_600_175_361;

: CONSTANT := (-2 ** 51) MOD (- 131_071)3

BEGIN TEST("D4A0O02B","LARGE INTEGER RANGE (WITH CANCELLATION) IN " &
“NUMBER DECLARATIONS; LONGEST INTEGER IS 64 BITS ");

O NS P

IFX/a-10RY/=10RZ /=0
ORD /= 454 279 ORE /= 1 OR F /= -1
THEN FAILED("EXPRESSIONS WITH A LARGE INTEGER RANGE (WITH " g
"CANCELLATION) ARE NOT EXACT ");
END IF;
RESULT;
END D4AOO2B;

Figure 2-7. Class D Test

2.4.3 Class D

Class D capacity tests make up less than one percent of
the tests in the test set. They have the same structure as
the Class C tests, and they contain the same dependencies.

Figure 2-7 shows a typical Class D test. Class D tests

should be repackaged in the same wmanner as the Class C

tests.

e .

B32A06A.ADA

CHECK THAT IDENTIFIERS IN SEPARATE OBJECT_DECLARATIONS
WITH IDENTICAL ARRAY_TYPE_DEFINITIONS ARE DIFFERENT
-- TYPES.

DAT 3/17/81

PROCEDURE B32A06A IS
A : ARRAY (BOOLEAN) OF BOOLEAN;

B ARRAY (BOOLEAN) OF BOOLEAN;
BEGIN
A := B; -- ERROR: TYPE MISMATCH.
A := (TRUE, TRUE); -~ OK.
'IF A = B THEN -- ERROR: TYPE MISMATCH.
NULL;
END IF;

END B32A06A;

Figure 2-8, Class B Test

2.4.4 Class B

As mentioned before, Class B tests are designed to fail
compilation. They make up approximtely 25 percent of the
tests, A typical Class B test is shown in Figure 2-5,

The review of Class B tests did not identify any
language-feature dependencies. Class B tests do not use the
REPORT package. Unlike Class A and Class C tests, the Class
B tests do not require that unsupported features be removed

from tests. Class B tests should still fail in any

implementation,

27

P,

-- LA3004A4.DEP
-- WKB 7/13/81

PACKAGE LA3004A4 IS
END LA3004A4;

WITH PKG;
PACKAGE BODY LA3004A4 IS

I ¢ INTEGER := 4;
BEGIN

PKG.P (I);
END LA3004A4;

Figure 2-9. Class L Test

2.4.5 Class L
The Class L tests were designed to fail at link time.

Figure 2-8 shows a Class L test. The Class L tests make up

approximately 7 percent of the tests in the test set.

These tests use separately compiled packages and many
of the advanced features of the 1language. The tests also
rely on other Class L tests to accomplish their objectives.
Because of the relationships that exist between Class L
tests, the changes made in one test may affect several other
tests., It 4is unlikely that evolving compilers would find
these tests useful, Because of the relationships that exist

betveen these tests and their limited usefulness during

compiler development, no attempt will be made to repackage

these tests.

2.4.6 Class E

There are no examples of class E tests in the version
] of the ACVC being studied, therefore no analysis of a Class

E test was made.

2.5 Summary

| The analysis of the ACVC test set revealed that several

o e

language~-feature dependencies existed in the test set. These
dependencies could not be totally eliminated, but it was
g possible to repackage the tests to minimize the impact of
the dependencies. The analysis also revealed that the
elimination of dependencies is not enough to produce a test
set which can be used to test subset compilers.

In addition to repackaging the tests, some method for
removing unsupported language features is needed for C(Class
A, Class C, and Class D tests. Once these unsupported

features are removed, the Class A, Class C, and Class D

tests could be combined with the Class B tests to make a

viable test set.

29

3. PROJECT DEVELOPMENT

3.1 Introduction

This chapter describes the development of an automated

' tool designed to remove unsupported language-features from
tests contained in the ACVC test set. The description begins

with a ©brief overview of the development process. This is

followed by three sections which describe the development of

' the tool's major components., The final section summarizes
the development process.

3.2 Overview

! The analysis presented in chapter 2 concluded that

Class A, Class C and Class D tests must be modified before
, they can be wused to test evolving Ada compilers., The
L analysis identified two modifications that must take place,
i the elimination of language-feature dependencies and the

removal of langauge features not supported in the compiler

being tested.

The removal of 1language-feature dependencies was
discussed in chapter 2. It requires the recoding of three
procedures contained in the separately compiled REPORT

-~ package. These recoded procedures must be inserted in the
test programs,

The removal of unsupported features from the test set
is a more difficult task. The fundamentsl system model of

' : the process required to accomplish the task is illustrated

in figure 3-1,

e el —

test program

!

i

—
MODIFY valid test

unsupported TEST PROGRAM | ——>

language ——>

features

Figure 3.1 Overview of Test Development Process

The modification of the test program shown in figure
3-1 can be broken into three steps (Figure 3-2). The first
step takes the test program as input and produces the
productions and any identifiers, characters, numbers and
strings as output. The second step uses the output from the
first step to build a representation of the test progranm.
The third step takes the representation and the list of

unsupported features as input, and produces a modified

program as output.

g

productions
[i
| &
|
tests | identify l identifier Build tree | manipulate
3 features ! a —_—) tree
! i
used ' & number Representation
& char
& string 1\
unsupported
features

Figure 3-2., Internal structure of Modify Test Program

3.3 Identification of language-features

One of the problems encountered during the analysis
phase was the need to identify the language-features used in
the ACVC tests. Initially the identification was done
manually using the BNF contained in the "Ada Reference
Manual”, In this approach, a matrix was produced that
represented the tests contained 1in the test set and the
language-features used in each of the tests. Once a compiler
was identified for testing, the matrix would be wused to
identify tests which contained features not supported by the
compiler. These tests would then be removed from the test

set. This approach was abandoned for two principle reasons:

32

(1) The analysis indicated that tests containing
unsupported language features could still be used if
the wunsupported features were removed (Appendix D

contains an example).

(2) The amount of effort required to generate the
matrix manually was unreasonable (Appendix E <contains

an example of a manual evaluation of a test).

The results of the first approach made it clear that
any process developed to modify the test set would have to
be completely automated to be of any value. Any process
which required manual evaluation of the tests would take toco

much effort.

If the process for modifying tests was to be automated,
the first step would still require the identification of the
language-features used in the test set. Since the manual
evaluation was essentially the same process performed by a
parser, the possibility of wusing an existing parser was
investigated. This investigation 1led to the selection of
the parser wused in a <compiler developed by Alan R.
Garlington (Ref 5) for wuse in the project (Appendix F
describes Garlington's compiler).

The parser used in Garlington's compiler was selected

for two primary reasons. The first reason was that it

parsed the entire Ada language proposed in the 1980 version

33

of the LRM, which meant it should be capable of parsing all
the tests in the ACVC test set. The second reason was that
it was available in source code. This meant that it would be
possible to modify the output from the parser based on the
needs of the tool. An additional advantage was that the
Garlington compiler was an evolving compiler and a potential
candidate for testing. The Garlington compiler resided on
the DEC-10 computer located at the Air Force Wright Avionics
Laboratory. The decision was made to transport the
Garlington compiler onto the VAX 11-780 at the Air Force
Institute of Technology, where several other ongoing Ada
efforts were residing. Appendix G describes the changes
made to the Garlington compiler in order to get it to
compile on the Vax 11-780.

Once the compiler was transported onto the VAX 11-780,
efforts were then directed toward finding a method for
outputting the language-features identified by the parser.
The Garlington compiler has a switch (traceparse) which
enables the output of productions used by the program, along
with some other information. By modifying some write
statements it was possible to output the valid productions.
The only other output required from the compiler was the
identifiers, characters, strings and numbers identified.
Although it was determined this information could be
extracted from the parser the effort did not go beyond

identifying the form of the output.

34

. ety —

The format for the output from the parser 1is as
follows:
production 3
id = aname
string = "abcde"

number = 1234

char = 'a
The are two reasons the efforts in the area of the

parser were limited. First, changes made in the LRM meant

the BNF used in Garlington's compiler (Appendix C contains
the BNF used in Garlington's compiler) no longer complied
with the Ada standard. Before a finished product could be
developed a new parser would be needed. Second, the primary
purpose of this thesis was to develop methods for
repackaging ACVC tests so they could be wused for testing
evolving compilers., Therefore, the primary emphasis was
placed on developing the process for modifying tests rather
than on the modification of an existing parser. As the
language continues to evolve the number of parsers available
should increase.
3.4 Development of a representation

Before any modifications to a test program can be made

some method of representing the program is required. A

commonly used representation is a parse tree (Figure 3-3

shows the structure of a typical parse tree). The parse tree

structure shown in figure 3-3 was considered, but it was not

A

i if_statement

if_head
if_condition TH;;\\\\\\\::;?ement_list

Figure 3-3, Parse Tree Representation

if-

head

if state
cond > THEN ¥ list

Figure 3-4, Representation of a production

used in this project. The structure used is shown in figure
3-4, It was selected because it would allow the use of well
known binary tree traversal routines., It was also selected
because it more accurately portrays the relationship between

siblings, which becomes very important when it is necessary

to remove langauge features from the tree.

The development of the representation can be broken
into three steps. The first step reads the input file and
creates separate lists to hold productions, identifiers,

i characters, strings and numbers. The input type is then
‘ y identified and inserted at the head of the appropriate list.
j | The second step takes the production number from the
’ head of the production list and builds a representation of
= the production. This representation must contain the
production name and the production number. The parent node

is given 1its actual production number, while its children

are initialized to 0. Figure 3-5 shows what the structure

would 1look 1like if the first production number was 3. The

R S

production number is shown in the upper left corner of each
box. Nodes which contain printable tokens are identified
with a 'P' in the lower right corner of the box.

The final step inserts the representation developed in

the tree. This is accomplished using a post-order traversal

beginning with the right (sibling) branch. The traversal

searches the tree for a production name matching the one to

be inserted. If a match is found the production number 1is
. checked, If the production number is O the representation is
inserted, otherwise the search is continued. This check is

§ necessary since the same production name¢ may appear several
places in the tree. This process 1is repeated until all
productions have been inserted in the tree. Figure 3-6 shows

what the tree would 1look 1like if the second production

number was 4, and it was inserted in the tree,

- 37

>

Program

compl_unit_list

f Figure 3-5. Representation of Program

$i= compl_unit_list

O~ -

:]

Program

v

N

compl_unit_list

!

e
5

compilation_unit

[¢

Figure 3-6.

Representation after Production 4 is added

3.5 Removal of unsupported features

Once the representation of the test program is built,
the next step is to remove the unsupported features from it.
At first it appeared this «could be accomplished by
traversing the tree and cutting unsupported productions by
setting pointers to NIL, A close look at sanple
representations showed this was not the case. There were two
types of productions which required special treatment. The
first type was the recursively defined productions (Appendix
I), while the second type was the empty productions
(Appendix H).

The most commonly encountered example of a recursive

production is the statement_list.

206. statement_list ::= statement_list statement ;

Figure 3-7 shows an example of a tree representation
which contains a statement_list production. If the compiler
being tested does not support the NULL statement, the
pointer to the NULL statement would be set to NIL., The tree
left remaining is not a valid representation of an Ada
program, For example, there could be a label left hanging on
the tree. That means that the pointer labelled D must also
be set to NIL. Another problea is that the comma following
the statement is still left onm the tree. Since the statement
has been eliminated, the comma must also be removed. By

setting the pointer 1labelled E to NIL, the comma would be

39

!

! 205
statement_list
A i
! 1
L {205 207 ! _o_] l
[|
| statement_list statement ; '
| F
5 v
209 213| unlabelled
207] opt_label list _statement]
statement f; H . .
_ v
\£ 210 224 simple_
. label_list statement
233 ELJ
label NULL
of |]
K —3 »
[e P

40

Figure 3-7. Representation of a recursive production

o M - —-———j
P

eliminated. While this completes the removal of the
printable tokens which would be illegal in a program, it
does not leave a valid tree. There are still nodes which

should be removed. The statement node no longer belongs in

the tree. To produce a valid representation requires setting
the pointer labelled C (Figure 3-7) to NIL., It also requires
that the pointer labelled A must be set equal to the pointer
: labelled B.

A slightly different «case arises if the statement

pointed to by the B pointer is not supported. The recursive

traversal used would set the pointer C to NIL before the

z pointer to A is set equal to C. Therefore it is necessary to
mark the descendant of any potentially recursive production.
This stops the traversal before valid statements are
eliminate?.

The second type of productions encountered can be

classified as empty productions (production 284 is an

example). They are productions which contain no data in
their children., Empty productions occur where the inclusion

of information is optional 1in a program. The problem is

identifying those instances where data is optional.
Production 285 is an example of such a case. Designators may

s be included in programs, but there is no requirement for

them. If they are removed from the program the remaining

program is still valid.

284, designator_option ::= --empty

285, designator_option ::= designator

-t h
1
3
J

| -4
282
i —
g . subg_bodx_dcli
| l |
oo Vv
!
l 283 262 QJﬁ 285
!
i xsubp_speq_;s_ﬁp--1 block_body (—3 END =3 designator_option
1 ;
| 4 v
o 286
, B
! BEGIN designator

id
. " 0
s #identifier®
| [¢

! ‘ Figure 3-8. Representation of a potentially empty production

; 42

.

282

subp_body_dcl

283 262 BJ 284

subg_;peq_ia_dp-q% block_body P—% END -i designator_option

i 1
o] 3

I[®

Figure 3-9., Representation after production is eliminated

Figure 3-8 shows an example of a structure using a
production which is potentially empty. If production 285 was
not supported by the compiler being tested, the only action
required is to remove the data in the representation pointed
to by 1its child pointer. In the representation shown in
figure 3-8, the designator representation would appear as an
empty box after the appr&priate action was taken (figure 3-9

shows what the modified representation would look like). The

43

7
!

s 5 i -

PR ICre -— - P .

important fact to remember when eliminating the potentially
empty productions 1is that the impact is- localized. No
changes are required at a higher 1level in the tree than
where the empty node is.

3.5.1 Qutputting the modified representation

After the unsupported features have been removed from
the tree, the final step 1is to output the information
contained in the remaining tree. This tree should represent
a valid Ada program which can be submitted to the evolving
compiler being tested,

Outputting the remaining representation is accomplished
by traversing the tree in an in-order fashion beginning with
the left' (son) branch. Nodes in the tree which contain
tokens that should be printed have the boolean variable
PRINTABLE set to true. This was done in the record when the

structure was being built.

3.6 Summary

The development of the project addressed several
factors which must be considered when developing a tool to

remove unsupported language-features. These included the

specification of the input format, the method of
representing the program, the different classes of
productions which can be removed from the tree, and the
method for outputting the modified tree. The next chapter
will describe the tool actually developed and its

capabilities.

4, IMPLEMENTATION

4,1 Introduction

Chapter three discussed the development of a tool which
removes unsupported language-features from the test set.
This chapter will discuss the actual implementation of the
tool, It will describe the input required, the data
structure used to represent the productions, the output from

the tool, and the limitations on the use of the tool.

4.2 Input

The fundamental system model illustrated in figure 3-1
requires a list of unsupported language-features and a test
program as input. The list of unsupported language-features
must be created by the user and placed in a file named
BADPRODS, In the current implementation the test program is
submitted to the parser using the following command
sequence:

px work.,p < filename_of_test_program

The fundamental system model also shows productions,
characters, strings, identifiers, and numbers as output from
the parser and input to the tool. This input requires some
manual preparation in the current implementation, This is a
result of not having an adequate parser to work with. The
format for the input was shown in chapter three. Productions
are submitted in the order they are output from the parser,

Identifiers, numbers, characters, and strings should be

© b e —— il
0

pre Tl aston Fy prrowy et it

I).

© ————

——

this

which

placed in the same order they occurred in the program. Once

file is prepared it is submitted to the tool using the

following command:

px tree.p < infile
There are two additional input files used by the tool,

should not require any modifications by the user.,

These files are called NULLPRODS and RECURSIVEPRODS. They
contain a list of all productions which can be recursive or

empty (these files can be found in Appendix H and Appendix

{ 4.3 Data Structures

This section will describe the data structure used to

represent the productions contained in the BNF. The data

structure used is shown in figure 4-1, The fields in the

record structure are used as follows:

DATA - contains the name of the production.

NUM - contains the production number (Appendix C).
SIBLING - points to a sibling.

SON - points to the scn (child).

PARENTPTR - points to the parent. This pointer 1is not
currently being used. It can be connected by modifying
the INSERTPRODUCTION procedure.

PRINTABLE - boolean used to identify the data in a node

that should be output.

NEWLINE - boolean used for formatting purposes.

- e

T TRREEE A T T

INDENT - boolean used for formatting purposes.
RECDESCENDANT - boolean used to identify & node as the
son of a recursive production.

CUTNODE - boolean used to identify nodes which contain

unsupported language features.

node = record
data : datuarray;
num : integer;
sibling : nodeptr;
son ¢ npdeptr;
parentptr : nodeptr;
printable : boolean;
newline : boolean;
indent : boolean;
recdescendant : boolean;
cutnode : boolean;

end;

Figure 4-1, Data structure used to represent productions

The actual representation is generated by means of a
large case statement, The case statement creates nodes
containing the information shown in figure 4-1 for each
production found in the BNF. The DATA field for characters,
strings, numbers, and identifiers is filled by taking the
top element from the «corresponding 1list <created by the
parser, The RECDESCENDANT and CUTNODE fields are initialized
false and then updated durirg the traversal of the tree by

checking the BADPRODS and RECURSIVEPRODS lists.

47

=+ - ———

I ot |+ e ~ - - - ~— -

N -

4.4 Qutput

There are two options available for output. They are
controlled by switches which are initialized in the
INITGLOBALS procedure. The first switch is FULLTREE, which
if set TRUE prints out the entire tree (minus comments).
This option was provided primarily for testing purposes and
would not normally be set TRUE. The second switch is
CUTTREE, which if set TRUE will print out the modified
version of the tree. All output is written to a file named
OUTF.

Figures 4-2, 4-3 and 4-4 illustrate how the output from
the tool should change as features are added to the compiler
being tested. Fig 4-2 shows what a tést should look like for
a compiler which does not support arrays and records. Figure
4-3 shows what the new version of the test should look 1like
after arrays are implemented. Figure 4-4 shows what the
test should look like after records and arrays are both

implemented.

4.5 Limitations

The current implementation has some limitations which
the user should be aware of. Perhaps the most serious is the
limitation imposed by the specific BNF used to develop the
parser. It makes it difficult to identify and eliminate
unsupported data types. For example, if integers were not
supported, the BNF provides no way of determining whether a

type is integer or resl. The current BNF uses the following

productions to represent an integer:?
subtype_indication ::= name

literal ::= number

There are two ways to overcome this problem. The first

is by outputting more detailed information from the symbol
table. The second and probably easier way is to wuse an
extended form of the BNF which is more descriptive. The
following extensions were made to the BNF to demonstrate

types could be cut from the representation along with

occurrences of the types in the program body.

subtype_indication ::= integer
literal ::= integer_number

integer_number ::= number

These extensions would be necessary for other data
types as well, There is ‘one problem not solved by the
extensions, and that is the scope of the variables. This
information would need to be obtained from the symbol table
and stored in the record structure.

The process developed to modify the tests also imposes
some inherent 1limitationy. Modifications are based on
syntactic issues and do not take into consideration the
semantic rules being tested. No provisions are made in the
test set to account for the semantic rules that an evolving

compiler may not have implemented. An example of this would

49

m— e e e

Ceime s areve shl G . e

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;

BEGIN
TEST ('"A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");
DECLARE
ABCDEFGHIJKIM : INTEGER; — USE OF ABCDEFGHIJKIM
NOPQRSTUVWXYZ : INTEGER; — USE OF NOPQRSTUVWXYZ

Z_1234567890 : INTEGER; — USE OF _1234567890
I1, I2, I3 : INTEGER;

Cl, C2 : STRING (1..6);

C3 : STRING (1..12);

BEGIN
Il := 2% (3-142)/2;1I2:=8; —USES () *4+ -/
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
C3 :=Cl & C2 ; — USE OF &
I2 := 16#D#; - USE OF #
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN — USE OF > = <
NULL;
END IF;
END;
RESULT;

END A210014;

Figure 4-2, Test with records and arrays removed

be the 1length of identifiers allowed in the compiler being
tested. The language definition allows identifiers to be as
long as the wmaximum input 1line 1length permitted by the
implementation. All <characters in the identifier are
significant, If the <compiler developer chose to make only
the first eight characters significant, no method is
provided to modify the test set accordingly. It could be
accomplished by generating shorter names for the identifiers
found in the symbol table. This would make comparisons

between the ACVC tests and the modified tests difficult.

50

PP owN

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;
BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");
DECLARE
TYPE TABLE IS ARRAY (1..10) OF INTEGER;

A: TABLE := (2 1 4 | 10=>1,1]3| 5..9=>0) ;
—USEOF: ()|,

ABCDEFGHIJKLM : INTEGER; — USE OF ABCDEFGHIJKIM
NOPQRSTUVWXYZ : INTEGER; — USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; — USE CF _1234567890

11, I2, I3 : INTEGER;

Cl, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
I1 = 2% (3-142)/2;12:=8; —USES ()*4+-/;
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
Cl3 :=Cl &C2; — USE OF &
I2 := 16#D#; - USE OF #
I3 := A'LAST; — USE OF '
IF I1 > 2 AND
Il = 4 AND
I1 < 8 THEN — USE OF > = ¢
NULL;
END IF;

Figure 4-3, Test with record removed

WITH REPORT;
PROCEDURE A21001A IS
USE REPCRT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE
TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A TABLE := (2] 4 | 10=>1,1|3{5..6=>0);
— USEOF : ()1,

TYPE BUFFER IS
RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;
END RZCORD; ~ USED TO TEST . LATER
Rl : BUFFER;
ABCDEFGHIJKIM : INTEGER; ~— USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; — USE OF NOPQRSTUVWXYZ
Z_1234567890 : INTEGER; — USE OF _1234567890

11, 12, 13 : INTEGER;

Cl, C2 : STRING (i..6);
C3 : STRING (1..12);

BEGIN
I1 ;2% (3-14+42)/2;I2:«8; —USES ()*+-/;
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
C3:=Cl &C2; - USE OF &
12 := 16#D#; — USE OF #
I3 := A'LAST; — USE OF '
R1.POS := 3; - USE OF .
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN — USE OF > = <
NULL;
END IF;
]
RESULT;

Figure 4-4. Complete test

5. RECOMMENDATIONS AND CONCLUSIONS

5.1 Introduction

This chapter describes areas where follow-on efforts

could begin and where deficiencies in the current

’ implementation exist. It also discusses conclusions reached
about the feasibility of using the modified test set to test

evolving Ada compilers.

! 5.2 Recommendations

There are several deficiencies in the current

implementation which should be corrected before the tool is

i used to produce a valid test set. The most critical
deficiency is the 1lack of an adequate parser., A parser

needs to be developed using the current langauge description

A

and any extensions that will allow a complete identification

of the language-features used in the test set. This parser

could possibly be built wusing LEX and YACC facilities

provided on the VAX 11-780. The LEX and YACC facilities

could conceivably be used to actually build the tree
representation,

The development of a new parser using a different BNF

t will require & new case statement to generate the data

structures. It is recommended that a program be written to

automatically generate the case statement, This program
should be able to generate the case statement using the BNF

as input,

53

O - — - - - - -

Cnce the parser is developed some method for keeping
track of the scope of variables is needed. This problem may
require storing symbol table information in the record
structures used to represent the productions,

Another problem which needs to be addressed is the
development of a method for automatically repackaging the i
tests. The will require either automating & text editing
process or the use of some type of include command in the
test skeleton developed.

Also, a driver needs to be written which will take the

tests from the test set and feed them into the parser. It

must then take the output from the parser and feed it to the

tool implemented. The output from the tool must be
concatenated with the other modified tests. The driver must
be capable of identifying the test class by reading the test
name, The wuser may consider doing this prior to submitting
the tests.

Finally, the tool needs to be tested extensively.
Because of the amount of time required to generate test

cases by hand, the tool has not been thoroughly tested.

5.3 Conclusions

There were a8 couple of conclusions reached while
working on this project concerning the quality of the ACVC
and the value of & testing capability for evolving
compilers. One conclusion was that the coding standards

used by SofTech were very helpful when it became necessary

54

to analyze the tests, In most cases they used only the
minimum amount of features needed to accomplish the test
objectives., It appeared to be a well organized testing
effort and should serve as an example for others to follow.
Other compiler validation efforts studied were not neerly as

1 well put together.

| The final conclusion reached was that the subset
testing capability will be of value to compiler developers

when it 1is completed. Although it would not represent a

complete testing capability, it is a good start to one. Also
when completely implemented it would represent a very easy

method for generating tests, The manual effort would be

S

minimal.

BIBLIOGRAPHY

Defense Advanced Research Projects Agency. Reference
Manual for the Ada Programming Language Proposed
Standard Document. Washington, D.C. : Department of
Defense, 1980.

Defense Advanced Research Projects Agency. Ada
Compiler Validation Implementers' Guide. Prepared by
Sof@ech, Inc., Waltham, Massachusetts, October 1980,
(AD A091 760).

Defense Advanced Research Projects Agency. Ada Compiler
Validation Test Programs. Prepared by SofTech, Inc.
Waltham, Massachusetts. November 1981.

Fisher, David A. "DoD's Common Programming Language
Effort," Computer, 11 (3): 24-33 (March 1978).

Garlington, Alan R. Preliminary Design and Imple-
mentation of an Ada Pseudo-Machine. MS Thesis.
Wright-Patterson AFB, Ohio : Air Force Institute of
Technology, March 1981, (AD A100 796).

Goodenough, John B. "The Ada Compiler Validation
Capability," Computer, 14 (6): 57-64 (June 1981).

Pressman, Roger S, Software Engineering: A Practi-
tioner's Approach. New York: McGraw-Hill Book
Company, 1982.

Wetherell, Charles and Alfred Shanmon. "LR Automatic
Parser Generator and LR (1) Parser." Livermore,
California: Lawrence Livermore Laboratory, 1976,

56

APPENDIX A

Evolving Compiler Development

This appendix describes the development of the evolving
compilers the modified test set is targeted to test. It also
provides a description of a typical Ada compiler development
effort.

The compilers the modified test set is targeted to test
are those which are developed as subsets. In other words, a
subset of the langauge is defined and the compiler is built
to compile just the subset. Additions are then made to the
subset to produce a version closer to the complete langauge.
The development process portrayed below is the type the test

set is targeted for,

lexical \\ lexical \\

parser parser

semantic semantic

code > subset 1 code > subset 2
finished / finished)

B

The compiler described below is typical of those targeted to
be tested by the modified test set. It is the Ada/1000
Compiler developed by Science Applications, Inc. This
information was taken from a Science Applications, Inc.
advertisement,

The Ada/1000 compiler is scheduled to consist of four
releases, The first release will support the following
features:

1. Integer objects and operators

2. Boolean objects and operators

3. Nested procedures and functions

4, Simple user defined types (arrays,
enumerations, simple records)

5. Sequential flow control (loop,

if-then-else, case)

The second release of the Ada/1000 will provide these
additional features :
1. Exception handling
. Overloading
. Packages (limited)

. Separate compilation (limited)

. Attributes (limited)

2
3
4
5. Tasking (limited)
6
7. Pragmas (limited)
8

. Floating point objects and

operators (limited)

58

.
— -~ . - . - — =
Y g e TNy

PvE it il ek i o o - o ada

The third release adds the following features:

1, Variant records

2. Full packages with separate compilation

3. Dynamic arrays (character strings and
variants)

4, Representation specification (length and
enumeration specification),

5. Tasking

6. Code statements

7. Derived types

The last release will be a validated Ada/1000 compiler.
It will include the following features:
1. Generics
2. Fixed point objects and operators

5. Low-level I/0

As mentioned before, the development of the Ada/1000
compiler is typical of many of the current development
efforts. The most significant aspect of these efforts is
that separate compilation is not typically supported wuntil
the second or third release. This means the ACVC test set is
of 1little wuse. It also means that the Input/Output package

will most likely be non-standard.

59

AT =g ST D55 Vi bt

APPENDIX B

Report Package

This appendix contains the report specification and the
report body source listings found in the ACVC test set (Ref

3).

REPORT SPECIFICATION

— REPSPEC.ADA
-~ THE REPORT PACKAGE PROVIDES THE MECHANISM FOR REPORTING THE PASS/FAIL
— RESULTS OF EXECUTABLE (CLASSES A, C, D, AND E) TESTS.
: -~ IT ALSO PROVIDES THE MECHANISM FOR GUARANTEEING THAT CERTAIN VALUES
i — BECOME DYNAMIC (NOT KNOWN AT COMPILE-TIME).
_ - JRK 12/13/79
’ —- JRK 6/10/80
— JRK 8/6/81

PACKAGE REPORT IS
~-— THE REPORT ROUTINES.
PROCEDURE TEST THIS ROUTINE MUST BE INVOKED AT THE
START OF A TEST, BEFORE ANY OF THE
OTHER REPORT ROUTINES ARE INVOKED.
IT SAVES THE TEST NAME AND OUTPUTS THE
NAME AND DESCRIPTION,
TEST NAME, E.G., "C23001A".
BRIEF DESCRIPTION OF TEST, E.G.,

- "UPPER/LOWER CASE EQUIVALENCE IN " &
"IDENTIFIERS".

(NAME : STRING(1..7);
DESCR : STRING

Prrrtl

)H
; PROCEDURE FAILED OUTPUT A FAILURE MESSAGE. SHOULD BE
INVOKED SEPARATELY TO REPORT THE
FAILURE OF FACH SUBTEST WITHIN A TEST.
BRIEF DESCRIPTION OF WHAT FAILED.
SHOULD BE PHRASED AS:
-~ "(FAILED BECAUSE) ...REASON...".

g (DESCR : STRING

)s

PROCEDURE COMMENT — OUTPUT A COMMENT MESSAGE.
(DESCR : STRING — THE MESSAGE.
);
PROCEDURE RESULT; — THIS ROUTINE MUST BE INVOKED AT THE

END OF A TEST. IT OUTPUTS A MESSAGE
INDICATING WHETHER THE TEST AS A
~~ WHOLE HAS PASSED OR FAILED.

-— THE DYNAMIC VALUE ROUTINES.
— EVEN WITH STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE DYNAMIC

FUNCTION IDENT INT — AN IDENTITY FUNCTION FOR TYPE INTEGER.
(X s INTEGER — THE ARGUMENT.
) RETURN INTEGER; -~ X,

61

o Y. - — i€

gt A

FUNCTION IDENT CHAR

(X : CHARACTER

) RETURN CHARACTER;

FUNCTION IDENT BOOL
(X : BOOLEAN
) RETURN BOOLEAN;

FUNCTION IDENT_STR
(X : STRING
7 RETURN STRING;
FUNCTION EQUAL

(X, Y : INTEGER
) RETURN BOOLEAN;

END REPCLT;

AN IDENTITY FUNCTION FOR TYPE
CHARACTER.

THE ARGUMENT.

XC

AN IDENTITY FUNCTION FOR TYPE BOOLEAN.
THE ARGUMENT.
x.

AN IDENTITY FUNCTION FOR TYPE STRING.
THE ARGUMENT.
x.

A RECURSIVE EQUALITY FUNCTION FOR TYPE
INTEGER.

THE ARGUMENTS.

X=Y.

REPORT BODY

— REPBODY ,ADA

— DCB 04/27/80C
— JRK 6/10/80
-~ JRK 11/12/80
-- JRK 8/6/81

WITH TEXT_IO;
PACKAGE BODY REPORT IS

USE TEXT_IO;

TYPE STATUS IS (PASS, FAIL);
TEST_STATUS : STATUS := FAIL;
TEST_NAME : STRING(1..7) := "NO_NAME";

PROCEDURE PUT_MSG (MSG : STRING) IS
-— WRITE MESSAGE. LONG MESSAGES ARE FOLDED (AND INDENTED).

MAX LEN : CONSTANT INTEGER RANGE 50..150 := 72; — MAXIMUM
— OUTPUT LINE LENGTH.

INDENT : CONSTANT INTEGER RANGE 0..20 := 15; — AMOUNT TO
— INDENT CONTINUATION LINES.

I : INTEGER := O; ~— CURRENT INDENTATION.

M : INTEGER := MSG'FIRST; — START OF MESSAGE SLICE.

N : INTEGER; — END OF MESSAGE SLICE.

BEGIN
LOOP

IF I + (MSG'LAST-M+1) > MAX LEN THEN
N := M + (MAX_LEN-I) - 1;
IF MSG(N) /= ' ' THEN
WHILE N >= M AND THEN MSG(N+1) /= ' ' LOOP
N :=N-1;
END LOOP;
IF N < M THEN
N := M + (MAX_LEN-I) - 1;
END IF;
END IF;
ELSE N := MSG'LAST;
END IF;
SET_COL (I + 1);
PUT_LINE (MSG(M..N));
1 := INDENT;
M:= N+ I;
WHILE M <= MSG'LAST AND THEN MSG(M) = ' ' LOOP
M:=M4+1;
END LOOP;
EXIT WHEN M > MSG'LAST;
END LOOP;
END PUT_MSG;

63

PROCEDURE TEST (NAME : STRING(1..7); DESCR : STRING) IS
BEGIN

TEST_STATUS := PASS;

TEST NAME := NAME;

PUT_MsG ("");

PUT_MSG ("—— " & TEST NAME & " " & DESCR & ".");
END TEST; r

PROCEDURE COMMENT (DESCR : STRING) IS
BEGIN

PUT_MSG (" - " & TEST_NAME & " " & DESCR & ".");
END COMMENT;

PROCEDURE FAILED (DESCR : STRING) IS
BEGIN

TEST_STATUS := FAIL;

PUT MSG (" % " & TEST NAME & " " & DESCR & ".");
END FAILED;

PROCEDURE RESULT IS
BEGIN
IF TEST_STATUS = PASS THEN
PUT MSG ("—- " & TEST NAME &
" PASSED M
ELSE PUT_MSG (Mlwwas " & TEST _NAME &
' FAILED O H

END IF;
TEST_STATUS := FAIL;
TEST _NAME := "NO_| NAME"

END RESULT;
FUNCTION IDENT_INT (X : INTEGER) RETURN INTEGER IS
BEGIN

IF EQUAL (X, X) THEN — ALWAYS EQUAL.

RETURN X; — ALWAYS EXECUTED.

END IF;

RETURN 0; — NEVER EXECUTED.
END IDENT _INT;

FUNCTION IDENT_CHAR (X : CHARACTER) RETURN CHARACTER IS
BEGIN
IF EQUAL (CHARACTER'POS(X), CHARACTER POS(X)) THEN — ALWAYS
UAL .

RETURN X; — ALWAYS EXECUTED.
END IF;
RETURN '0'; — NEVER EXECUTED.

END INDENT_CHAR;

ettt e haiiianmnisthaneniihatingio fortaion iiathsidenttcinauiing .

FUNCTION IDENT BOOL (X : BOOLEAN) RETURN BOOLEAN IS

BEGIN
IF EQUAL (BOOLEAN'POS(X), BOOLEAN'POS(X)) THEN -—ALWAYS
— EQUAL.
RETURN X; - ALWAYS EXECUTED.
END IF;
RETURN FALSE;

END IDENT BOOL;
FUNCTION IDENT STR (X : STRING) RETURN STRING IS

BEGIN
IF EQUAL (X'LENGTH, X'LENGTH) THEN — ALWAYS EQUAL.
RETURN X; — ALWAYS EXECUTED.
END IF;
RETURN "";
END IDENT STR;

FUNCTION EQUAL (X, Y : INTEGER) RETURN BOOLEAN IS
REC_LIMIT : CONSTANT INTEGER RANGE 1..100 := 3; — RECURSION

— LIMIT.
Z : BOOLEAN; -- RESULT.
BEGIN
IF X < O THEN
IF Y < O THEN

Z := EQUAL (-X, -Y);
ELSE Z := FALSE;
END IF;
ELSIF X > REC_LIMIT THEN
Z := EQUAL (REC_LIMIT, Y-X+REC_LIMIT);
ELSIF X > O THEN
s= EQUAL (X-1, Y-1);
EISEZ := Y = O3
END IF;
RETURN Z;
EXCEPTION
WHEN OTHERS =)
RETURN X = Y;
END EQUAL;

BEGIN

NULL;
END REPORT;

65

Appendix C

BNF
This appendix contains the
compiler. Terminals will be r
letters. Nonterminals will be
letters,
66

BNF used by Garlington's
epresented by uppercase
represented by lower case

l. system goal symbol ::= END program END

2. program ::=

3. program ::= compl_unit_list

4, compl_urit_list ::= compilation_unit ;
5. compl_unit_list ::= compl_unit_list compilation_unit
6. vertical_bar :1:= |

. vertical_bar ::= !

8., id ::= *IDENTIFIER*

9. char ::= *CHAR*

10. string ::= *STRING¥*

11. number :im *NUMBER*

12, enumeration_literal ::= id

13. enumeration_literal ::= char

14, pragma_list_option :i=

15, pragma_list_option ::; pragma_list

16, pragma_list ::= pragma ;

17, pragma_list ::= pragma_list pragma ;

18. pragma ::= PRAGMA id argument_list_option

19, argument_list_option ::=

20. argument_list_option ::= (argument_list) . N -

21, argument_list ::= argument R e
22, argument_list ::= argument_list , argument

23. argument ::= expression

24, argument ::= id => expression B 4
25, declarative_part ::i=

26. declarative_part ::= declaration_list

27. declaration_list ::= declarative_item

-e
T

67

28, declaration_list

cdeclaration_list declarative_item

29. declarative_item

object_decleration

30. declarative_item

number_declaration

31. declarative_item

use_clause

f
i : 32, declarative_item type_declaration

33. declarative_item

subtype_declaration

34, declarative_item

exception_declaration

35. declarative_item

renaming_declaration

36. declarative_item

pragma

37. declarative_item

package_declaration

f 38. declarative_iten

subprogram_declaration

39. declarative_item ::= task_declaration
40. declarative_item ::= representation_specification

41. object_declaration ::= identifier_list : constant_option
subtype_indication initialization_option

42, object_declaration ::= id : constant_option
subtype_indication initialization_option

43, object_declaration ::= identifier_list : constant_option
array_type_definition initialization_option

44, object_declaration ::= id : constant_option
array_type_definition initielization_option

45, number_declaration ::= identifier_list : CONSTANT
becomes expression

46, pumber_declaration ::= id : CONSTANT becomes expression

——
omes Itm im .

48, constant_option

* Ve,
..

66 T2a CONS

constant.-

E ! : 51.'1ﬁitiéliza€1an_pption t:= becomes expression

68

52. type_declaration ::= TYPE id discriminant_part_option
IS type_definition

53. type_declaration ::= TYPE 1id discriminant_part_option
54, discriminant_part_option ::=

55. discriminant_part_option ::= (discriminant_list)

56. discriminant_list ::= discriminant_declaration

57. discriminant_list ::= discriminant_list :
discriminant_declaration

58. discriminant_declaration ::= identifier_list :
subtype_indication initialization_option

. 59. discriminant_declaration ::= id : subtype_indication
initialization_option

60. subtype_indication ::= name

61. subtype_indication ::= name constraint

62. constraint ::= range_constraint

63. constraint ::= accuracy_constraint
} 64, type_definition ::= enumeration_type_definition

= range_constraint

65. type_definition

66. type_definition

accuracy_constraint

67. type_definition

array_type_definition

68. type_definition

record_type_definition

69. type_definition

access_type_definition

13
(1]
]

70. type_definition derived_type_definition
71. type_definition ::= private_type_definition
£ 72, subtype_declaration ::= SUBTYPE id IS subtype_indication

73. derived_type_definition ::= NEW subtype_indication

74. range_constraint_option

75. range_constraint_option ::= range_constraint

! 76. range_constraint ::= RANGE range

77. range ::= simple_expression ., simple_expression

78. enumeration_type_definition ::=
(enumeration_literal_list

79. enumeration_literal_list ::= enumeration_literal

80. enumeration_literal_list ::= enumeration_literal_list
enumeration_literal

8l. accuracy_constraint ::= DIGITS simple_expression
range_constraint_option

82. accuracy_constraint :i= DELTA simple_expression
range_constraint_option

83, array_type_definition ::= ARRAY (index_list) OF
subtype_indication

84. index_list ::= index

85. index_list ::= index_list , index

86. index ::= name RANGE <

87. index ::= full_discrete_range

88. index ::='name

89. discrete_range ::= name range_constraint_option
90. discrete_range ::= range

91. full_discrete_range ::= name range_constraint
92, full_discrete_range ::= range

93. component_association ::= choice_list =) expression
94, component_association ::= name accuracy_constraint
95. choice_list ::= choice

96. choice_list ::= choice_list vertical_bar choice
97. choice ::= simple_expression

98. choice ::= full_discrete_range

99. choice ::= OTHERS

100. record_type_definition ::= RECORD component_list
END RECORD

70

101.
102.
103.
104.
105.
106.
107.

108.

109.

110.

111.
112.
113.

114,
115,
116.
117.
118.
119.
120.
121.
122,
123,
124,
125,

component_list ::=

component_list ::= compon_decl_list variant_part_option
component_list :i= variant_part

component_list ::= NULL ;

compon_decl_list ::= compon_decl

compon_decl_list ::= compon_decl_list compon_decl

compon_decl ::= identifier_list : subtype_indication
initialization_option 3

compon_decl ::= id ¢ subtype_indication
initialization_option ;

compon_decl ::= identifier_list : array_type_definition
initialization_option ;

compon_decl ::= id : array_type_definition
initialization_option ;

variant_part_option ::=
variant_part_option ::= variant_part

variant_part ::= CASE name IS variant_list_option
END CASE ;

variant_list_option ::i=

variant_list_option ::= veriant_list

variant_list ::= variant

variant_list ::= varjant_list variant

variant ::= WHEN choice_list => component_list
access_type_definition :t= ACCESS subtype_indication
id_option ::=

id_option ::= id

identifier_list ::= id , id

identifier_list ::= identifier_list , 1id
name_list ::= name

name_list ::= name_list , name

71

e ———————— T e > S

126.
127,
128,
129.
130.
131.
132,
133.
134,
135.
136.
137.
138.
139.
140,
141,
142,
143,
144,
145,
146.
147,
148,
149,
150.
151,

neme ::= id

name ::= indexed_component

name ::= selected_component

name ::= attribute

indexed_component ::= name generalized_expression_list
indexed_component ::= name ()

selected_component ::= name ., id

selected_component ::= name . ALL

selected_component ::= name . string

attribute ::= name ' id

attribute ::= name ' DIGITS
attribute ::= name ' DELTA
attribute ::= name ' RANGE

subprogram_name ::= name
subprogram_name ::= string
literal :;:= string

literal ::= number

literal ::= char

literal ::= NULL
expression_option :i=

expression_option $:= expression

generalized_expression_list ::= gel _head)
gel_head ::= 1_paren generalized_expression
gel _head ::= gel_head , generalized_expression

1_paren ::= (

generalized_expression ::= expression

72

——n

152.

153.
154,
155.
156.
157.
158.
159.
160.
lé61.
162.
163.
164.
165.
166.
167.
168.

169.
170.
171.

172.
173.
174,
175,
176.
177.

generalized_expression ::= simple_expression ..
simple_expression

generalized_expression ::= component_association
generalized_expression ::= name range_constraint

expression ::

and_expression
expression ::= or_expression
expression ::= xor_expression
expression ::= and_then_expression
expression ::= or_else_expression

expression 3 relation

and_expression ::= relation AND relation
and_expression ::= and_expression AND relation
or_expression ::= relation OR relation
or_expression ::= or_expression OR relation
xor_expression ::= relation XOR relation
xor_expression ::= xor_expression XOR relation
and_then_expression ::= relation and_then relation

and_then_expression ::= and_then_expression or_else
relation

and_then ::= AND THEN
or_else_expression ::= relation or_else relation

or_else_expression ::= or_else_expression or_else
relation

or_else ::= OR ELSE

relation ::= simple_expression

relation ::= simple_expression = simple_expression
relation ::= simple_expression /= simple_expression
relation ::= simple_expression < simple_expression
relation ::= simple_expression <= simple_expression

73

LI NN

PRSIV T

178.
176,
18C.
181.

182,

183.
184,
185.
186.
187.
188.
189,
190.
191.
192,
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.

relation ::= simple_expression

relation ::

simple_expression
relation ::= simple_expression

relation ::= simple_expression

Wr—w-m

> simple_expression
>= simple_expression
IN subtype_indication

IN range

relation ::= simple_expression NOT IN

subtype_indication

relation ::= simple_expression NOT IN range
unop_term ::= + term

unop_term := - term

unop_term ::= NOT term

simple_expression ::= simple_expression + term
simple_expression ::= simple_expression - term
simple_expression ::= simple_expression & term

simple_expression ::= term

simple_expression ::= unop_term

term :3= term * factor

term ::= term / factor

term ::= term MOD factor

term ::= term REM factor

term ::= factor

factor ::= primary

factor ::= primary ¥** primary
primary ::= literal

primary ::= name

primary : allocator

primary ::= name generalized_expression_list

primary ::= generalized_expression_list

74

204, allocator ::= NEW name

205, statement_list ::= statement ;

206. statement_list ::= statement_list statement ;
207, statement ::= opt_label_list wunlabelled_statement
208. statement ::= pragma

209. opt_label_list ::=

210. opt_label_list ::= label_list

211, label_list ::= label

212. label_list ::= label_list label

213, unlabelled_statement ::= simple_statement

214, unlabelled_statement ::= compound_statement

4 | 215. simple_statement ::= assignment_statemert
(216. simple_statement ::= name
217. simple_statement ::= exit_statement
218. simple_statement ::= return_statement
219. simple_statement ::= goto_statement

220. simple_statement ::= raise_statement

221, simple_statement ::= abort_statement

222, simple_statement ::= delay_statement

223, simple_statement ::= name generalized_expression_list

224, simple_statement ::= NULL

225, compound_statement ::= if_statement END IF

. 226. compound_statement case_statement END CASE

227. compound_statement

accept_statement

228, compound_statement select_statement END SELECT

229, compound_statement

o
]

loop_statement END LOOP
id_option

230, compound_statement ::= block END id_option

75

231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242,
243,
244,
245,
246.
247,
248,
249.
250.
251.
252,
253.
254.
255.

tag_option i:=

tag_option ::= id

label ::= << 1d >>

assignment_statement ::= name becomes expression

if _statement ::= if_head

if statement ::= if_head_else statement_list

if_head ::= if_condition THEN statement_list

if_head ::= if_head_elsif_condition THEN statement_list
if_condition ::= IF condition

if _head_elsif_condition ::= if_head_elsif condition
if_head_elsif ::= if_head ELSIF

if_head_else ::= if_head ELSE

condition ::= expression

case_statement ::= case_header alternative_list_option
case_header ::= CASE expression IS
alternative_list_option ::=

alternative_list_option ::= alternative_list
alternative_list ::= alternative

alternative_list ::= alternative_list alternative
alternative ::= pre_alternative statement_list
pre_alternative :t= WHEN choice_list =>
loop_statement ::= tag_option loop_intro statement_list
loop_intro ::= LOOP

loop_intro WHILE condition LOOP

loop_intro ::= FOR id IN reverse_option
discrete_range LOOP

256. reverse_option i:=
76
L e e
-~ i alaelini il

257.
258.
259.
260.
261.
262.
263.
264,

265.

266.
267.

268.
269.
270.
271,
272.
273,
274,
275,
276.
277.
278.
279.

280.
281.

282.

reverse_option ::= REVERSE
bleck ::= tag_option declare_part_option block_body }
declare_part_option ::=

declare_part_option ::= declare_kw declarative_part
declare_kw ::= DECLARE

block_bedy ::= BEGIN statement_list exception_option
exception_option ::=

EXCEPTION
exception_handler_list_option

exception_option ::

exit_statement ::= EXIT id_option when_condition_option
when_condition_option ::=

when_condition_option ::= WHEN condition
return_statement ::= RETURN expression_option
goto_statement ::= GOTO neame
subprogram_declaration ::= subp_spec
subprogram_declaration ::= gen_inst_subp
subprogram_declaration :$:= subp_spec IS SEPARATE
subprogram_declaration ::= subp_body_dcl
gen_inst_subp ::= subp_spec_is NEW name
subp_spec ::i= subp_hdr

subp_spec ::= generic_part subp_hdr

subprogram_nature ::= FUNCTION

subprogram_nature ::= PROCEDURE

subp_hdr ::= subprog_nature_desig formal_part_option
return_option

subprog _nature_desig ::= subprogram_nature designator
subp_spec_1is ::= subp_spec IS

subp_body_dcl ::= subp_spec_is_dp block_body END
designator_option

77

283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.

294.

295.

296.
297.
298.
299.
300.
301.
302.
303.
304.
305.

306.

subp_spec_is_dp ::= subp_spec_is declarative_part
designator;option =

designator_option ::= designator

designator ::= id

designator ::= string

return_option ::=

return_option ::= RETURN subtype_indication
formal_part_option ::=

formal_part_option ::= (parameter_declaration_list)
parameter_declaration_list ::= parameter_declaration

parameter_declaration_list ::=
parameter_declaration_list : parameter_declaration

parameter_declaration ;:= identifier_list : mode_option
subtype_indication initialization_option

parameter_declaration ::= id : mode_option
subtype_indication initialization_option

mode_option ::=

mode_option ::= IN

mode_option ::= OUT

mode_option ::= IN OUT

package_declaration ::= pkg_spec_dcl
package_declaration ::= gen_inst_pkg
package_declaration ::= PACKAGE BODY id IS SEPARATE
package_declaration ::= pkg_body_dcl

gen_inst_pkg ::= pkg_spec_hdr IS NEW name

pkg_spec_dcl ::= pkg_spec_hdr_is_dp
private_decl_part_option END id_option

pkg_spec_hdr_is_dp ::= pkg_spec_hdr_is declarative_part

pkg_spec_hdr ::= pkg spec_hdr IS

308.

309.
310.
311.
312,
313,
314,
315,
316.
317.
318.
319,
320.
321.

322,
323,

324,
325,

326.
327.
328,
329.
330.

331.

332,

pkg_spec_hdr ::= generic_part pkg_header
pkg_spec_hdr ::= pkg_header

pkg_header ::= PACKAGE id

pkg_body_dcl ::= pkg_body_is_stms END id_option
pkg_body_is_stms ::= pkg_body_is_dp block_body
pkg_body_is_stms ::= pkg_body_is_dp
pkg_body_is_dp ::= pkg_body_is declarative_part
pkg_body_is ::= PACKAGE BODY id IS
private_decl_part_option ::=
private_decl_part_option ::= PRIVATE declarative_part
private_type_definition ::= PRIVATE
private_type_definition ::= LIMITED PRIVATE
use_clause ::= USE name_list

renaming_declaration 3;:= id ¢ constant_option name
RENAMES name

renaming_declaration 3:= id ; EXCEPTION RENAMES name

renaming_declaration ::= subp_hdr RENAMES
subprogram_name

renaming_declaration PACKAGE id RENAMES name

renaming_declaration

TASK opt_type_kw id
RENAMES name

task_header ::= TASK opt_type_kw id
task_declaration ::= task_header opt_task_is
task_declaration ::= task_body
task_declaration ::= task_body_id_is SEPARATE

task body ::= task_body_id_4is_dp block_body
END id_option

task_body_1id_is_dp ::= task_body_id_is declarative_part

task_body_id_is ::= TASK BODY id IS

333.
334,
335.

337.
338.
339.
340.

341,
342 .

343.

344,
345,
346.
347,

348.
349.
350.
351.
352.

353.
354,
355.
356.

357.

opt_type_kw ::=

opt_type_kw ::= TYPE

opt_task _is ::=

opt_task_is ::= IS opt_entries rep_spec_list_option

END id_option
rep_spec_list_option ::=
rép_spec_list_option ti= rep_spec_list
rep_spec_list ::= r.presentation_specification ;

rep_spec_list ::= rep_spec_list
representation_specification ;

opt_entries ::=

opt_entries ::= entry_dcl_list

entry_dcl_list ::= entry_declaration ;

entry_dcl_list ::= entry_dcl_list entry_declaration ;
synchronization_statement ::= accept_statement
synchronization_statement ::= delay_statement

entry_declaration $:= ENTRY id (discrete_range ')
formal_part_option

entry_declaration ::= ENTRY id formal_part_option
accept_hdr ::= ACCEPT id formal_part_option
accept_hdr ::= ACCEPT paren_name formal_part_option
accept_statement ::= accept_ hdr

accept_statement ::= accept_hdr_do statement_list ENL
id_option

accept_hdr_do ::= accept_hdr DO

paren_name ::= id (expression)
delay_statement ::= DELAY simple_expression
select_statement ::= select_kw select_body

select_statement ::= select_kw conditional_ent:y_rall

- ———

358.
359.

360.
361.
362.
363.
364.
365.
366.
367.
368.

369.
370.
371.

372.

373.
374,
375.
376.
377.
378.
379.
380.

381.

select_statement ::= select_kw timed_entry_call

conditional_entry_call ::= entry_list else_kw
statement_list

else_kw ::= ELSE

timed_entry_call ::= entry_list_or_del stmt_list_option
entry_list_or_del ::= entry_list OR delay_statement ;
entry_list ::= entry_call_statement stmt_list_option
entry_call_statement ::= name ;

stmt_list_option ::=

stmt_list_option ::= statement_list
select_kw ::= SELECT

select_body ::= select_alternative_list else_kw
statement_list

select_body ::= select_alternative_list
select_alternative_list ::= select_alternative

select_alternative_list ::= select_alternative_list OR
select_alternative

select_alt_front :i= condition_option
synchronization_option ;

select_alternative ::= select_alt_front statement_list
select_alternative ::= select_alt_front
select_alternative ::= condition_option TERMINATE ;

condition_option ::=

condition_option ::= WHEN condition =)
abort_statement ::= ABORT name_list

comp_unithdr ::= pragma_list_option context_list_option
compilation_unit ::= comp_unithdr 1_unit

compilation_unit ::= comp_unithdr SEPARATE (
. designator_dot_name) s_unit

382. designator_dot_name ::= designator

383, designator_dot_name ::= designator_dot_name
designator

384. s_unit ::= c_body

385. s_unit

t= task_body

] | 386. c_body ::= subp_body_dcl

: 387. c_body ::= pkg_body_dcl
388. 1_unit ::= c_body
389. 1_unit ::= subp_spec
390. 1_unit ::= pkg_ spec_dcl
391. 1 _unit ::= gen_inst_pkg
392. 1_un.t ::= gen_inst_subp

{ 393, context_list_option ::=

394, context. list_option ::= context_list

$ f 395, context_list ::= context
; 396. context_list ::= context_list context
397, context ::= with_clause

398. context ::= with_clause wuse_clause ;

399, with_clause ::= WITH name_list ;

400, exception_declaration ::= identifier_list : EXCEPTION
401. exception_declaration ::= id : EXCEPTION

402, exception_handler_1list_option ::=

;T 403, exception_handler_list_option ::=
exception_handler_1list

404. exception_handler_list ::= exception_handler

405. exception_handler_list ::= exception_handler_list
exception_handler

406, exception_handler ::= eh_pre_stm statement_list

82

B W NP

407,
408,
409.

410,
411.
412,
413,
414,
415.
416,
417,
418,

419,
420,

421,
422,
423,
424,
425,
426,
427.
428,
429,
430,

431,

eh _pre_stm ::= WHEN exception_choice_list =)
exception_choice_list :i= exception_choice

exception_choice_list :¢= exception_choice_list
vertical_bar exception_choice

exception_choice ::= name

exception_choice ::= OTHERS

raise_statement ::= RAISE name

raise_statement ::= RAISE
generic_formal_list_option ::=
generic_formal_list_option ::= generic_formal_list
generic_part ::= GENERIC generic_formal_list_option
generic_formal_list ::= generic_formal ;

generic_formal_list ::= generic_formal_list
generic_formal ;

generic_formal ::= parameter_declaration
generic_formal ::= TYPE id discriminant_part_option
IS generic_type_definition
generic_formal ::= WITH subp_hdr
generic_formal ::= WITH subp_hdr IS subprogram_name
generic_formal ::= WITH subp_hdr IS <>
generic_type_definition ::= (<>)
generic_type_definition t:= RANGE <
generic_type_definition ::= DELTA <

generic_type_definition ::= DIGITS <

generic_type_definition

array_type_definition

generic_type_definition = access_type_definition

generic_type_definition ::= private_type_definition

representation_specification ::=
length_spec_or_enum_rep

|

433.
434,
435,

436.
437.
438.
439.
440,
441,

442,

443 .

444,

representation_specification ::=
record_type_representation

representation_specification ::= address_specification

length_spec_or_enum_rep ::= FOR name USE expression

record_type_representation ::= for_name_use_record
alignment_clause_option comp_name_loc_list_option
END RECORD

for_name_use_record ::= FOR name USE RECORD

alignment_clause_option :i=

alignment_clause_option :t= AT MOCD simple_expression ;

comp_name_loc_list_option ::=

comp. name_1loc_list_option ::= comp_name_loc_list

comp _name_loc_list ::= comp_name_loc ;

comp_name_loc_list ::= comp_name_loc_list
comp_name_loc

comp_name_loc ::= name AT simple_expression
range_constraint

address_specification ::= FOR name USE AT
simple_expression

- %

Appendix D

Removal of Language-features from Valid Tests

The purpose of this appendix is to show that the tests
found in the ACVC can still be useful after
language-features have been removed from them. It provides
an example of a Class A test and shows what it would look
like after some features have been removed. Figure D-1 shows
the test to be evaluated.

The first case studied is the impact the removal of
record structures would have on the test. Figure D-2
illustrates what the test would look like after all uses of
the record structure were removed. The only test objective
not accomplished by the test is testing the acceptance of
'.'". The remainder of the test is still valid.

If the array is added to the 1list of unsupported
features the resulting test would look like the test shown
in figure D-3. The use of ':', '(', "2', "1', ',' and ree
would no longer be tested, but the remaining test would be
valid.

This process can continue until all that remains is the
procedure calls to TEST and RESULT, provided they were
recoded wusing the supported language features, When the
string type is no longer supported the TEST procedure call

would be an illegal construct.

WITH REPORT;
PROCEDURE A21CO14 IS
USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A s TABLE := (214 | 10=>1,11315..9=>0) ;
— USEOF : ()|,
TYPE BUFFER IS
RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;
END RECORD; — USED TC TEST . LATER
R1 : BUFFER;
ABCDEFGHIJKLM : INTEGER; — USE OF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; — USE OF NOPQRSTUVWXYZ
Z_1234567890 INTEGER; — USE OF _1234567890
11, I2, I3 : INTEGER;

Cl, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
Il :=2% (3 ~-1+2)/2;1I2:=83; -<USES ()*+-/3;
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
C3 :=Cl & C2 ; — USE OF &
I2 := 16#D#; — USE OF #
I3 := A'LAST; — USE OF '
R1.POS := 3; — USE OF .
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN — USE OF > = <
NULL;
END IF;
END;
RESULT;

END A210014A;

Figure D-1., C(Class A Test

86

WITH REPORT;

PROCEDURE A21C014 IS
USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");
DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A :TABLE := (2 4 1'10=>1, 11 31 5..9=>0) ;

— USEOF : ()| ,
ABCDEFGHIJKLM : INTEGER; — USE OF ABCDEFGHIJKIM
NOPQRSTUVWXYZ : INTEGER; — USE OF NOPQRSTUVWXYZ
Z 1234567890 : INTEGER; — USE OF _1234567890

I1, I2, I3 : INTEGER;

Cl, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
I1 ¢m 2% (3-1+4+2)/2;12:=8.3; —USES ()*4 -/
Cl := "ABCDEF" ; — USE OF "
C2 := Cl;
C3 :=Cl &C2; — USE OF &
I2 := 16#D#; — USE OF #
I3 := A'LAST; — USE OF '
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN — USE OF > =
END IF;
END;
RESULT;

Figure D-2. Class A Test with record removed

Tt =

WITH REPCRT;
PROCEDURE A210014 IS
USE REPORT;

BEGIN
TES!' ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE
ABCDEFGnIJKLM ; INTEGER; -- USE CF ABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; —— USE OF NOPQRSTUVWXYZ
Z_1234567890 : INTEGER; -- USE OF _1234567890
I1, I2, I3 : INTEGER;
Cl, C2 : STRING (1..6);
C3 : STRING (1..12);

BEGIN
Il
Cl

2*(3-142)/2;12:=8; —USES () *4 -/
"ABCDEF" ; — USE OF "
CZ Cl; .
C3 :=Cl & C2 3 — USE OF &
I2 := 16#D#; - USE OF #
IF I1 > 2 AND
I1 = 4 AND
I1 < 8 THEN - — USE OF > = <
NULL;
END IF;
END;
. RESULT;
! END A21001A;

*s oo e es
[/}

Ve

Figure D-3. Class A Test with records and arrays removed

Class A tests in most cases still accomplish many of
the test objectives even when language-features are removed.

In most cases, Class C and Class D tests do not accomplish

. their test objectives when features are removed. The prime
purpose for removing features from Class C and Class D tests
is so they will not fail compilation. If they failed
compilation, they would require manual analysis to determine

! they failed because they used unsupported features,

AD-A127 333 PRELIMINARY DESIGN AND IMPLEMENTATION OF A METHOD FOR
VALIDATING EVOLVING ADA COMPILERS(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..

UNCLASSIFIED E D MILLER MAR 83 AFIT/GCS/MA/83M-1 F/G 9/2 NL

: ddda

a da m..-uuu..u
=

133344

S Y T o e B e o e T L il e el e
=3

i ¢
]

MICROCOPY RESQLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. APPENDIX E

Manual Evaluation of Tests

This appendix was included to show the manual effort required to
analyze tests contained in the ACVC., A small segment of the test shown

. in figure 2-3 is analyzed using the BNF contained in the LRM (Ref 1).
The segment analyzed is shown in figure E-1.

WITH REPORT;
PROCEDURE A21001A IS
USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");
DECLARE
TYPE TABLE IS ARRAY (1..10) OF INTEGER;

A:TABLE = (21 4 110=>1,11315..9=>0) ;
— UEOF: ()1,

END;

Figure E-l. Test Segment Analyzed Manually

In the following analysis, the code being analyzed is found between

the asterisks.

89

e -

TEST A21001A.ADA

compilation ::= compilation_unit

compilation_unit ::= context_specification
subprogram body

context_specification :i:= with_clause
with clause ::= WITH unit_ name;

name ::= identifier

identifier ::= letter {letter_or_digit}

letter ::= upper_case_letter

subprogram body ::= subprogram specification IS
declarative_part
BEGIN
sequence_of_statements
END ?desigutor];
subprogram specification ::= PROCED'RE identifier
identifier ::= letter ﬁetter_or_digit}

letter ::= upper_case_letter

THHHHHHHHHHHHHHHHHHE S JSE REPORT § HHHHEHHHHHHHHHHHHHHHHHE
declarative part ::= declarative_item
declarative item ::= use_clause
use_clause ::= USE package_name
it= identifier

identifier ::= letter éetter_or_digit}

letter ::= upper_case letter

AN I BEGTN 59N I

sequence_of statements ::= statement {statement}

*ﬂ*mmmm%m

TEST("A21001A" ,"CHECK THAT BASIC CHARACTER SET IS
I I HHHEHHHHHHHHHHHHHHAHHHHHEHHHREEEHHHHHHE

RIS RN TEST AR

statement ::» simple statement

simple_statement ::= procedure call

procedure_call ::= procedure_name [actual parameter_part];
name ::= identifier

identifier ::= letter {letter_or_digit}

letter ::= upper_case letter

actual_parameter_ part ::= (parameter_association
{.puangter_association)

TN "AZloou" SN

parameter_association ::= actual parameter
actual_parameter ::s expression
expression ::= relation

relation ::= simple expression
simple_expression :i= term

tera ::= factor

factor ::= primary

primery :i= literal

litersl ::= character_string

character_string $:= "{charactex}"

ACCEPTED");

.
. .-

P e
.

1

7,’\
\

#ena#® "CHECK THAT BASIC CHARACIER SET IS ACCEPTED''ssi

parameter_association ::= actual_ parameter
actual_parameter ::= expression
expression ::= relation

relation ::= simple_expression
simple_expression :i= term

term ::= factor

factor ::= primary

primary ::= literal

literal ::= character_string

character_string ::= "{character}"

SHHHHHHHHEHHHHEHHHHHHHEE. DECLARE, SHHHHHHHHHEHHHHHE R
statement ::= compound_statement
compound_statement ::= block
block ::= DECLARE
declarative_part
BEGIN
sequence_of_statements
END [block_identifier]

declarative_part ::= Eleclarative_itu}

declarative_item ::= declaration

declaration ::= type_declaration

type_declaration ::= TYPE identifier IS type definition;
identifier ii= letter {}ettet;;u;Jdigig}

letter ::= upper_case_letter

92

;3....3.&..,L IR

HHHEEHEHEEHEH ARRAY (1..10) OF INTEGER MHHHHHHHHHHHHAH

type_definition ::= array_type definition

array_type definition ::= ARRAY index constraint OF
component_subtype_indication

index_constraint ::= (discrete_range)

discrete_range ::= range

range ::= simple expression..simple_expression

IR] SIS I I NI I I S

simple_expression ::= term
term $:= factor

factor ::= primary

primery ::= literal .
literal ::= numeric_literal
numeric_literal ::= decimal_number
decimal number ::= integer
integer ::= digit {c:iigit}

SR 1O SHEHHHHHEEHHEHHNHHHEHHEHHHHNH

simple _expression ::= term

ters ::= factor

factor ::= primary

primery i:= literal

literal ::= numeric_literal
nuseric_litersl ::= decimal number
decimal_number ::= integer

integer ::= digit {ugi.t}

93

N 3“ o

HHEHEHHERHHHAHHEAHHHHHHEEE. TNTEGER HHHHEHEHHHHEHHHHHHHHHHMHHNNE
subtype_indication ::=s type_mark

type merk ::=s type name

name ::= identifier

identifier ::= letter {letter_or_digit}

letter ::= upper_case_letter

ek A TABLE := (2 ! 4 1 10=> 1, 11 3 | 5..9 => 0); #hes
declarative_item ::= declaration
declaration ::= object_declaration

object_declaration ::= identifier list:
subtype_indication [:= expression]

SHHEHHHHHHHHHHHHHHHHHRRHENE | SHHEHHHEHHHHHHHHHHHHHAHHHHHHE
identifier_list ::= identifier
identifier ::= letter {letter_or_digit}

letter ::= upper_case letter

SHHHHHHHHHHHHHHHHHHHEHENEE TABLE SHHHHHHHHHHHHHHHHHHHHHHHHHE
subtype_indication ::= type mark

type_mark ::= type_name

name ::= identifier

identifier ::= letter {ilettgr_or_digit}

letter ::= upper_case_ letter

SRRAARSRIRARNNE (21410 =) 1, 11315,.9 =) Q) HRENERANEINREES
expression ::= relation
relation ::= simple_expression

simple_expression ii= ters

term :i= factor

e r———— : Y m-"m——mw»

factor ::» primary

primary ::= (expression)

o expression ::= relation
relation ::= simple_expression
simple_expression ::= term
term ::= factor

factor ::= primary

primary ::= aggregate

aggregate ::= (component _association{component_asociat:ion)

component_association ::= [choice {Ichoice} =>] expression

' { SHHHHHHEHHHHHHHHHHHHHHHEHHEEE 2 IHHHHHHHHHHEHHHEHHHEHHHHHHHH
= choice ::= simple_expression

simple expression ::= term

term ::= factor

factor ::= primary

primery $im literal
literal ::= numeric_litersl
numeric_literal ::= decimal number

decimal_pumber ::= integer

integer ::= digit {digit}

mmammm i

s
;‘1 lk R 2

choice :i= simple_expression
simple expression ::= terms

tern i:= factor

factor ::= primery

primary $:= literal

litex;al {i= numeric_literal

numeric_literal ::= decimal_ pumber
decimal_number ::= integer [.integer] [exponent]

integer ::= digit {[underscore] digit}

choice ::= simple_expression
simple_expression ::= term

term :3:= factor

factor ::= primary

primary 3:= literal

literal ::= numeric_literal
numeric_literel ::= decimal_number
decimal pumber ::= integer '
integer ::= digit {ligit}

WW 1 SHHHHHHEHHHHHHHHHHHHHHHHHHE
expression ::= relation

relation ::= simple_expression
simple_expression ::= term

ters ::= factor

factor ::= primary

primery ::=literal

litersl ::= numeric_literal
numeric_literal ::= decimel number
decimal_number ::= integer

integer :3:= digit {digit}

96

EER T : LTI T T IR TR A PR TN Y

e ———

S S Q‘__.E_‘q_-._!_ — e

FHHEHHEHHEHEEHEREONEE] | 3] 5..9 =) 0 SHHHHHHHHHHHHHHHHHHHEE

component_association ::= [choice {l choice} =>] expression

FHHHHAHHHHHHHHHEHHHEHHHNE] SHHHHHHRHEHHAHHHHHHHHEHHHR
choice ::= simple_expression
simple_expression ::= term

term ::= factor

factor ::= primary

prihry $i= literal

factor ::= primary '

primary ::= literal

literal ::= numeric_ literal
numeric_literal ::= decimal number
decimal_number ::= integer
integer ::= digit {d:lg:lt}

FHHAHHEEHHHHHHEHHHHHHHHHHHHRE 3 HHHHHHHHHHHHHHHHHHHHHHHHH
choice ::= simple expression

simple_expression ::= term

term ::= factor

factor ::= primery

primary $:= literal

numeric_litersl ::= decimal pumber

decimel_pumber ::= integer
integer ::= digit @131:}

RY .MLLJ__-* e

FHHHHEIHHHHEHHHHEHHHHEENE 5 G SHHHHHHHHEHHHHHHHHHHHHRHHEH
choice :i= discrete_range
discrete_range ::= range

range ::= simple_expression..simple_expression

FHHHEHHHHHHEHHHHEHHHHEHHEHE § HHHEHHHEHEHEHEHEHHEHHEHHEHH
simple_expression ::= term

term $:= factor

factor ::= primary

primary :i= literal

numeric_literal ::= decimal number

decimal number ::= integer

integer ::= digit {}igii}

FHEHHHEHHHEHHHHHHHHEHHHHHHHEE QRN HHHHHHHRE
simple_expression ::= term

term ::= factor

factor ::= primary

primery ::s literal

numeric_literal ::= decimal number

decimsl number ::= integer

integer ::= digit {éigig}

SEHHHHHHHHHHHHHHHHHHHHHNEHE O HHEHEHHHHHEHHHHHE N
expression ::= relstion

relstion ::= simple_expression

simple_expression ::= term

term $:= fector

factor ::= primery

———-

.*4
1 ok e

primery ::mliteral
literal ::= numeric_literal
nuneric_literal ::= decimal number
decimal number ::= integer

itate
i tim | di
nteger digit \.d git J

99
ot s T AT T T ‘ -

S —— P

. AT et e
i K31
i 1
L
| i
APPENDIX F !
!
‘ Description of the Garlington Compiler
‘ This appendix describes the Ada compiler used to parse
the test programs. It was developed by Alan Garlington as
‘ part of his thesis effort in the design and implementation
! of an Ada pseudo-machine (Ref 5).
! The portion of the user's guide which describes the
| features implemented is reproduced here for convenience,
{ 1. Integer Variables., Number declarations and variable
initializations are not implemented.
, 2. Package declarations,
]
; 3. Procedures and functions with parameters (mode types
? mey be specified).
4, Task declarations.

5. Selected components may be used to open visibility
° to objects that are within scope but which are not
' directly visible.

6. Most integer arithmetic or Boolean expressions may

be used including those using short circuit conditions.

However, the following list of operators has not been
. implemented: REM, *#*, &, IN.

. 7. The following statements may be used:

Assignment

Procedure, function or entry calls
Exit

Return

IF THEN ELSIF ELSE

Accept

Loops (except FOR loop)

00 rMd AN od
e o ¢ o o o @

100

;
|
|
? |
&

}

j

f

e a

nin s - ——— . e 4 = A ot oy e Y

The aspect of the Garlington compiler which had the
most significant influence on this project was the parser.
The parser used by Garlington was a LR (1) parsing
automaton. It is a bottom-up, finite-state machine whose
operations are directed by a set of language-specific
tables. These tables were generated using the LR package
from Lawrence Livermore Laboratory (Ref 8). The parser uzad
was designed to parse the full Ada language as described in
the 1980 version of the "Reference Manual for the Ada

Programming Language".

101

B Y s

T s R . et ———. St - -
-

APPENDIX G

Modifications to the Garlington Compiler

This appendix describes the changes made in the
Garlington compiler in order to get it to compile on the VAX
11-780, There were four primary changes made to the
Garlington compiler.

The first change required was a case.conversion. The
version taken off the DEC-10 was written in all wupper-case
letters. To compile on the VAX, all reserved words must be
in lower-case. The program was run through a case conversion
routine to change it to lower case,

The sec&hd change removed all 1line numbers from the
program. This was accomplished using a program to filter out
line numbers.

The third change removed all CYBER and DEC-10 specific
routines., This included the date and time facilities used by
the compiler.

The final and probably most serious modification was
related to the structure of the case statements used in the
program, The version of Pascal implemented on the DEC-10
supported the use an OTHERS form to catch anything that fell
through the case statement. The version implemented on the
VAX does not support the OTHERS statement, This required

inserting a range check before each case statement.

WP T T T

’rr" ?: TTe————— , ' '~»»v",—-“-'-""'""--fTT._____.—___-__----—-"—-!‘

APPENDIX H

Empty Productions

’ This appendix contains a 1list of all the empty and

potentially empty productions found in the BNF contained in

Appendix Cc. These productions are listed by their

corresponding number.

—r - ——

{ 2 54 120 259 296 341

3 55 121 260 297 342

APPENDIX I

ecursive Productions

—

This appendix contains a2 list of all the recursive and
potentially recursive productions found in the BNF contained

in Appendix C, These productions are 1listed by their

corresponding number.

292 404
293 405
339 408
340 409
343 417
344 418
370 441
371 442
382
383
395
396

e e e e e e .

VITA

Edward D. Miller, Jr. was born on 1 May 1954 in
Middlesboro, Kentucky. He attended Worthington High School
in Worthington, Ohio and graduated in 1972. In July of that
year, he entered the United States Military Academy in West
Point, New York and subsequently graduated with a Bachelor
of Science degree in June of 1976. After graduation Captain
Miller attended the Airborne Course at Fort Benning,
Georgia, the Signal Officer Basic Course at Fort Gordon,
Georgia and the Communications and Electronics Staff Officer
course at Fort Sill, Oklahoma. He was then assigned as the
Communications-Electronics Staff Officer for the 588th
Engineer Battalion (Corps) at Fort Polk, Louisiana. While at
Fort Polk, he also served as a Platoon Leader and Company
Commander in the 5th Signal Battalion, 5th Infantry Division
(Mechanized). After leaving Fort Polk, Captain Miller
attended the Signal Officers Advanced Course at Fort Gordon,
Georgia and the Teleprocessing Operations Course at the Air
Force Institute of Technology at Wright-Patterson AFB, Ohio.
After completing the Teleprocessing Operations Course, he
entered the Air Force Institute of Technology School of

Engineering.

Permanent address: 416 Haymore Ave., K,

Worthington, Ohio 43085

UNCLASSIFIED

SECURITY CLASS'FICATION OF THIS ®AGE (When Pata Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BErCEe CoMe DG PoRM -
. WU 2. GOVY ACCESSION NO 3. PECIS'FNT'S CATALOG NUMBER
APIT/GCS/MA/83M-1 /\'E -AQN B33
4. TITLE (and Subtitie) I S. TVFE OF REPCAT & PERIOD COVERED
PRELIMINARY DESIGN AND IMPLEMENTATION OF A METHOD
POR VALIDATING EVOLVING ADA COMPILERS MS Thesis
6. PERFORMING ORG. REPORYT NUMBER
(¥, AUTHOR(S) ¥ CONTRACT OR GRANT NUMBER(S)
Edward D. Miller, Jr.
CPT USA
T PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGNAN ELEMENT, PROJECT, TASK
APEA A WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
Language Control Branch (ADOL), March, 1983
Computer Operations Division, Aeronautical Sys va 13. NUWBER OF PAGES

Wright-Patterson AFB, OH 45433 113
. MON! ING AGENCY NAME & ADDRESS(1! different from Controlling Office) 18, SECURITY CLASS. (of this report)

Unclassified
[%e. D!C&ASS!F!CAT!ON DOWNGRADING
SCHEOULE

[76. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT (of the abstrect entered in Block 20, If difterent feom Report)

8. SUPPLEMENTARY NOTES pﬁfm
i
for

Research ond Professionel
Alr Force Institute of Technology (A1Q)

Wiight-Patierson AFB OH 43433 .7 APR 983
1. KLY WORDS (Centinue on reverss side if y and | ity by block mumber)
Ada
Compilers
Validation
20. ADSTRACT (Continwe en side U ary and identify by block mmmber)

This project consisted of a preliminary design and a partial implementation of
a tool which modifies the existing Ada Compiler Validation Capability (ACVC) test
set so it can be used to test evolving Ada compilers. The project evaluated the
feasibility of repackaging each of test classes found in the ACVC and suggested
methods for repackaging the tests. The tool developed uses a table-driven
parser which parses the July 1980 proposed standard. It uses output from the
parser to generate a representation of a test program. Once the representation |

rFORM
COITION OF 1 NOV €8 18 O [4
DD v W73 ° stoLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Dete &

g e S e T = i

2

SECURITY CLASSIFICATION OF THIS PAGE(When Date Enteres)

Block 20

is developed, unsupported language-features are removed from it. The J
remaining representation is output as a valid test program. »

————

M

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

